

Archimedes Operating System

A Dabhand Guide

Alex and Nie van Someren

For Alice and Carol

Archimedes Operating System:
A Dabhand Guide
© Alex and Nick van Someren
ISBN 1-870336-48-8
First edition, second printing February 1990

Editor: Bruce Smith
Proofreading: Syd Day
Typesetting: Bruce Smith
Cover: Clare Atherton

All Trademarks and Registered Trademarks are hereby acknowledged. Within this
Reference Guide the term BBC refers to the British Broadcasting Corporation.

All rights reserved. No part of this book (except brief passages quoted for critical
purposes) or any of the computer programs to which it relates may be reproduced
or translated in any form, by any means mechanical electronic or otherwise
without the prior written consent of the copyright holder.

Disclaimer: Because neither Dabs Press nor the authors have any control over the
way in which the contents of this book are used, no warranty is given or should be
implied as to the suitability of the advice or progran1s for any given application. No
liability can. be accepted for any consequential loss or damage, however caused,
arising as a result of using the programs or advice printed in this book.

Published by Dabs Press, 76 Gardner Road, Prestwich, Manchester, M25 7HU. Tel.
061-773 2413.

Typeset in 10 on llpt Palatino by Dabs Press using the Acornsoft VIEW wordpro­
cessor, MacAuthor, Apple Macintosh SE and LaserWriter II NT.

Printed and bound in the UK by BPCC Wheaton, Exeter, Devon, EX2 8RP.

2

Contents

Introduction 13
Listing and Appendicies 13
What this Book is Not About 14

1 : RISC Technology 15
The History of RISC 15
RISC and the Archimedes 16
The ARM 17
The MEMC Memory Controller 18
The VIDC Video Controller 18
The IOC Input/Output Controller 18
Conclusion 19

2 : The ARM Instruction Set 20
The Programmer's Model 20
R15: The Program Counter 20
Conditional Execution 22
ARM Assembler Command Syntax 24
Shifted Operands 24
Brannch Instructions: B, BL 25
Arithmetic & Logical Instructions 26
Comparison Instructions 27
Multiplication Instructions 27
Single Register Load and Store Instructions 29
Multiple Register Load/Store Instructions 31
Software Interrupts 32

3 : The BASIC V Assembler 33
Basic Concepts 33
Using the Assembler 33
Variable Initialisation from BASIC 33

3

Archimedes Operating System

4

Labels in Assembler Source
Allocating Memory
Assembling Into Memory
Offset Assembly
Dealing with Forward References
Implementing Two-pass Assembly
Other Assembler Directives
Position Independence of Object Code
Executing Assembler Programs
Conclusion

4 : The Operating System
Communicating with the OS

How SWIS Work
SWI Names
SWI Error Handling
Error Handling - Numbering
Error Generation

5 : Command Line Interpreter
OS_CLI Command Syntax
File Redirection
Command Line Aliases
OS_CLI Commands
*CONFIGURE
*ECHO
*ERROR
*EVAL
*FX
*GO
*GOS
*HELP
*IF
*IGNORE
*KEY
*SET
*SETEVAL
*SETMACRO
*SHADOW

34
34
35
35
35
36
37
37
38
39

40
40
41
42
43
44
45

47
47
48
49
50
51
52
52
53
53
53
54
54
55
55
56
57
58
58
58

Contents

*SHOW 59
*STATUS 59
*TIME 60
*TV 60
*UNSET 60

6: OS_CLI Related SWis 61
OS_CLI 61
os_ReadVarVal 61
os_SetVarVal 62
Marvin 62

7 : Filing Systems 66
Introduction 66
Naming of Filing Systems, Files and Directories 67
Directories 67
Files on Different Filing Systems 68
Device Filing Systems 69
Anciliary File Information 70
Load and Execute Addresses 70
File Types and Date Stamping 71
Libraries and Search Paths 71

8 : The FileSwitch Module 74
FileSwitch Commands 74
*ACCESS 75
*APPEND 76
*BUILD 76
*CAT 77
*CDIR 77
*CLOSE 77
*COPY 78
*COUNT 79
*CREATE 80
*DELETE 80
*DIR 81
*DUMP 81
*ENUMDIR 82
*EX 82

5

Archimedes Operating System

6

*EXEC
*INFO
*LCAT
*LEX
*LIB
*LIST
*LOAD
*OPT
*PRINT
*REMOVE
*RENAME
*RUN
*SAVE
*SETTYPE
*SHUT
*SHUTDOWN
*SPOOL
*SPOOLON
*STAMP
*TYPE
*UP
*WIPE

9 : Filing System SWis
os_File (SWI &08)
os_Find (SWI &OD)
File Path Considerations in OS_Find
Error Handling Extension
OS_GBPB (SWI &OC)
OS_BGet (SWI &OA)
OS_BPut (SWI &OB)
os_Args (SWI &09)
OS_FSControl (SWI &29)

lO:Modules
Module Related Commands
*MODULES
*RM CLEAR
*RMKILL

83
83
83
84
84
84
85
86
86
87
87
88
88
89
89
89
90
90
90
91
91
92

93
93

100
101
102
102
105
107
107
109

119
119
120
120
120

Contents

*RM LOAD 121
*RMREINIT 121
*RM RUN 121
*RMTIDY 122
*UNPLUG 122

11: Writing Modules 123
Workspace Memory 123
Module Errors 123
The Format of Module Code 124
Module Start-up Code 125
Module Initialisation Code 125
Module Finalisation Code 126
Service Call Handling Code 126
Service Call Reason Codes 127
Module Title String 132
Help String 132
Help and Command Decoding Table 133
Decoding Table Layout 133
SWI Chunk Base Number 136
SWI Handling Code Offset 136
SWI Decoding Table 137
SWI Decode Code 137
A Note About SWI Translations 137
os_Module (swr &lE) 138
Printer Buffer Module 141

12 : Writing Applications 149
Starting Applications 149
OS_GetEnv (SW! &10) 150
Alternative Ways of Starting Applications 150
Temporarily Running Another Application 151
Top Down Applications 151
The TWIN Text Editor 152
Memory Management 153
ARM Memory Structure 153
Heap Management Software and SWis 154
os_Heap (swr &lD) 154
os_ValidateAddress (swr &3A) 156

7

Archimedes Operating System

General Guidelines on Compatibility 156
The Shell Module - Source Code 157

13 : The Window Manager 161
What's On Offer? 161
The Structure of Windows 162
Window Manager Co-ordinate System 163
Programming Using the Window Manager 163
Writing a Window Manager Application 164
The Polling Loop 166
Dealing With Reason Codes 167
Closing Down the Application Window 172
Window Manager Support for Menus 172
The Structure of Menus 173
Programming Menus 173
Menus in the WimpMaze Example 175

14: The Font Manager 186
Dealing with the Font Manager 186
An Example 187
Getting Text on the Display 188
Plot Type Options 189
Conversions Between the Co-ordinate Systems 190
Conclusion 193

15: Sound Introduction 195
The Three Levels of Sound 196
Level 0 - SoundDMA 196
Level 1 - SoundChannels 196
Level 2 - SoundScheduler 197

16 : Sound Star Commands 199
Level 0 Commands 199
Level 1 Commands 200
Level 2 Commands 205

17 : Sound SWI Calls 207
Level 0 swr Commands 207
Level 1 swr Commands 215

8

Contents

Level 2 swr Commands 221

18 : The Voice Generator 226
TheSVCB 226
Gate On 227
Fill 228
Gate Off 231
Update 232
Instantiate 232
Free 232
Install 232
Voice Generator Code 232

19 : Character Input/Output 238
Simple Input/Output 238
Character Input 238
Getting Hold of Single Characters 239
Whole Lines of Characters 240
Keyboard Control Functions 241
Character Output 244
Selecting Which Output Streams are to be Used 245
Selecting the VDU Stream 246
Selecting the RS423 Output Stream 246
Selecting the Printer Stream 246
Selecting the Spool File Stream 247
Character Output to the Selected Streams 248

20: Vectors 255
The Hardware Vectors 255
The Operating System Software Vectors 258
Writing Code which Intercepts Vectors 259
SWis Which Deal with Vectors 260

21 : Interrupts and Events 263
Good Behaviour 264
Switching Interrupts on and Off 264
The Main Interrupt Vector 265
Events 265

9

Archimedes Operating System

IO

22 : Conversion SWis 271
String Conversion and Decoding 271
ASCII to Binary Conversions 273
Binary to ASCII Conversions 274

23: Miscellaneous SWis 278
Timer Functions 278
VDU Related SWIS 281

24 : The ARM Chip Set 287
Inside MEMC 287
Virtual Memory Support 289
The MEMC Control Register 289
The Logical to Physical Translator 290
DMA Address Generators 290
Inside VIDC 291
Sound Frequency and Stereo Position 292
Inside IOC 293

25 : Floating Point Model 295
Floating Point Programmer's Model 295
The ARM Floating Point Instructions 296
Co-processor Data Transfer 297
Co-processor Register Transfer 297
Co-processor Data Operations 298
Co-processor Status Transfer Instructions 300
Conclusion 300

Appendices
A : Programs Disc
B : Dabhand Guides Guide

Index

302
304

311

Program Listings
4.1.
4.2.
6.1.
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
11.1.
12.1.
12.2.
12.3.
13.1.
14.1.
17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
18.1.
18.2.
19.1.
19.2.
19.3.
20.1.
20.2.
20.3.
21.1.
21.2.
22.1.
22.2.
22.3.
23.1.
23.2.

Demonstrating OS_SWINumberToString
Demonstrating os_ReadEscapeState
Marvin
Save screen using os_File SWI
Use of os_File to read catalogue information
Load a block of screen memory
Using os_Bget to count spaces and words
Use of OS_FSControl to convert a file type number
Display directory tree
Manipulating file attributes
Printer Buffer Module
The Shell source
The Heap
Validate Address
Wimp Maze
Font demonstration
Demonstrating the Sound_Configure SWI
Storing sounds
Stereo re-positioning
Attaching channels
Demonstrating the QSchedule command
Using QTempo and QBeat
Voice Generator Module Creator
Sound Sample
Simple I/0
Write! example
Pretty Plot
Manipulating the hardware vectors
Using os_CallAvector
Intercepting Reade
Turning interrupts on and off
The bouncing mouse pointer
Using GS calls
Binary to Decimal Conversion
Demonstrating number conversion
Using timed function SWis
Reading time elapsed since power-on

Contents

45
46
63
94
96
99

106
113
116
117
141
157
159
160
176
193
208
211
213
220
222
224
233
237
252
253
253
256
261
262
264
268
272
274
276
279
280

11

Archimedes Operating System

23.3. Checking screen mode
23.4. Cursor related swrs
23.5. Reading the mouse buffer
23.6. Read VDU variables for given mode
23.7. Using os_ReadPalette
23.8. Reading a pixel

This Book and You!

281
282
282
284
285
286

This book was written using the TWIN . Text Editor on an Archimedes
microcomputer. The authors' files were transfered and edited in VIEW. The
completed manuscript was transferred serially to an Apple Macintosh SE
where it was typeset using MacAuthor. Final camera-ready copy was
produced on an Apple Laserwriter IINT from which the book was printed
by A. Wheaton & Co.

Correspondence with Dabs Press, or the authors, should be sent to the
address given on page 2 or via electronic mail on Telecom Gold (72:
MAG11596) or Prestel (942876210). An answer to your letter or mailbox
cannot be guaranteed, but we will try our best.

All correspondents will be advised of future publications, unless we receive
a request otherwise. Personal details held will be provided on request, in
accordance with the Data Protection Act. Catalogues detailing the full
range of Dabs Press books and software are available free of charge on
request.

Publisher's Note
Dabs Press would like to express their thanks and gratitude to Felix
Andrew for the chapters on sound and Mike Ginns for the icing!

Author's Note
The authors would like to thank David Acton for his assistance in
preparing this book and David Knell for his work on the Floating Point
Assembler software.

12

Introduction

Welcome to 'Archimedes Operating System: A Dabhand Guide', a book
which describes the features and facilities of the Operating System for
Acorn Archimedes computers. In publishing this book, our intention is to
explain this rich and sophisticated piece of software which is, of necessity,
rather complex. Though considerable technical documentation already
exists, much of it is rather impenetrable to those who do not already
understand the Operating System - this book aims to rectify the problem.
In addition it supplies some vital information not published before - in
particular that relating to the sound system.

Within this book you will find a sizeable part of the Operating System (OS)
documented in detail - and in, what we hope, is an easily digestible form.
Many examples and program listings are included and these are also
available on a disc which has been produced as a companion to this guide.
The programs disc also includes several extra programs and comes
complete with its own User Guide. Appendix A contains full details.

Each chapter of this book describes a particular aspect of the OS. The first
section is an introduction to RISC technology, and subsequent chapters
describe basic Operating System functions, filing systems and it's internal
structure. Two of the most useful and, we suspect, the most used
components - the Window Manager and the Font Manager - are given
particular attention.

Listings and Appendices
Many example listings, both short and long, are included in the relevant
sections of this book. It is recommended that where an example program
does not specify a display mode, an 80-column mode (such as mode 0)
should be selected. Several appendices have also been included and are
situated at the end of this book. These summarise information which is best
left in tabular form.

13

Archimedes Operating System

What this Book is Not About
This book should not be regarded as an introduction to the Archimedes for
inexperienced users: it assumes the reader has an understanding of the
fundamentals of assembly language programming and is familiar with the
basic functions of an Operating System. In particular, it is aimed at those
familiar with the BBC Microcomputer MOS, although an experienced
programmer will encounter no difficulties. Though one of the chapters of
this book summarises ARM assembly language, it is by no means a tutorial
introduction and you are refered to publications such as Archimedes
Assembly Language: A Dabhand Guide by Mike Ginns and published by
Dabs Press.

In attempting to explain the inner workings of the OS there is necessarily
some overlap with technical details that also appear in other published
works: most notably, Acorn's Programmer's Reference Manuals (PRM). It is
certainly not our intention to try to replace the PRM, instead we are seeking
to make this kind of information easier to understand. In practice, if you
are planning on producing commercial application software or program­
ming to an advanced level, we recommend that you refer to the PRM in
conjunction with this guide: we have not attempted to cover absolutely
every last detail of the os.

14

/
l

1 ·RISC Technology

The History of the RISC
As computer users devise increasingly sophisticated and complex
applications, so the computer industry strives to provide them with more
powerful machines. Countless debates about the design and architecture of
computer equipment ensure that a wealth of new ideas continues to be
turned into finished products. In recent years one of the best publicised of
these debates has been whether microprocessors should have simpler or
more complicated instruction sets to aid the writers of 'machine-code'
software, in particular high-level language compilers. One camp promotes
Complex Instruction Set Computers (crscs); the other advocates Reduced
Instruction Set Computers (RISCs).

The details of the RISC versus CISC debate are well outside the scope of this
book, but it is worth acquiring a basic understanding of the concepts
involved. Promoters of crsc architecture would like us to believe that it is
most efficient to have microprocessors that execute highly sophisticated
instructions - almost equal in complexity to those of the high-level
languages in which most applications will be written. Clearly, if a micro­
processor has instructions which multiply arrays together, for example, or
instructions to extract substrings from larger sequences of characters, then
the life of the compiler-writer will be apparently easier. However, such
instructions are usually completed in several (and possibly many) cycles of
a microprocessor's master clock and this limits the number of instructions
that can be executed per second.

Advocates of the RISC philosophy, on the other hand, recommend
instruction sets where every instruction performs a fairly simple task (to
increment a register for example). This simplicity permits most instructions
to be executed in as little as one cycle. So although we may have to use
more instructions to achieve the same goal, each instruction takes the
shortest possible amount of time. This approach has the disadvantage that
the computer's memory needs to be capable of being addressed quite fast.
Such memory is usually expensive.

15

Archimedes Operating System

While programmers may or may not like the instructions they have to use,
other considerations need to be taken into account for any real application.
In particular, there is the issue of interrupts. If a CISC machine is in the
middle of a long and complicated instruction, it is usually impossible to halt
it reliably and service an interrupt. The instruction must be completed,
possibly taking a very long time, and only then may the interrupt request be
dealt with. Of course, RISCs suffer rather less from this problem, which is
known as 'interrupt latency', because most instructions will be completed
just a few cycles after the interrupt.

Although the matter of interrupt latency is just one of many in the CISC
versus RISC contest, it is one which is close to the hearts of users of Acorn
computers. And close to the hearts of the architects of Acorn's products.
The BBC Microcomputer (which uses the 6502 microprocessor) has the
great virtue that much of its operation revolves around interrupts. This
allows its users the pleasure of 'type-ahead' keyboards and background
printing tasks, to name but two examples. In designing their own
microprocessor, one of Acorn's goals was to ensure that interrupt latency
was as low as possible, thereby allowing the strengths of the BBC Micro to
be engendered in the Archimedes.

In the final analysis, each kind of architecture has certain virtues. As far as
users of Acorn's RISC - Archimedes - are concerned, the important fact is
that ruses run with breathtaking speed and have an instruction set of great
consistency and simplicity. These qualities make Archimedes computers a
pleasure to use and to program, and with such attributes being paramount
for most of us, it hardly matters whether or not crscs are really 'better'.

RISC and the Archimedes
For a variety of reasons, Acorn was not satisfied with the RISC micro­
processors being designed by other manufacturers and decided to embark
upon its own RISC project. During 1983 the specification of a 32-bit
microprocessor began to take shape in the minds of Acorn's senior
engineers. Known as ARM, an acronym for Acorn RISC Machine, the device
was conceived as the heart of the next generation of Acorn computer
products. Its design owes a good deal to the 6502 microprocessor, which
Acorn had used with great success for many years. In particular, both the
6502 and the ARM have very short interrupt latency (well under one
microsecond on an 8 Mhz ARM). Acorn engineers were also able to go one
better than other RISC manufacturers with, for example, the provision of
fifteen general-purpose registers and several other sets of registers which
are invisibly 'paged in' when servicing interrupts.

16

RISC Technology

In Archimedes computers the ARM is supported by three other custom-built
chips. These were designed by Acorn and are collectively called the 'ARM­
related chip set'. Individually known as the MEMC, VIDC and IOC they are
responsible for memory control, video and sound control, and input/
output control respectively. This four-chip set requires very little other
than RAM, ROM, a screen and a keyboard to form a complete computer.
Whilstthe ARM can operate without any of these chips, a desktop computer
needs memory management and 1/0 to be useful, and these devices provide
such features with an absolute minimum of extra circuitry.

The rest of this section is concerned with the ARM and the functions that
each of the ARM related chips provide. If you are more concerned with
programming the ARM rather than the hardware itself then you may want
to skip on to the next section and perhaps read this one later.

The ARM
The ARM is a 32-bit RISC-architecture microprocessor with a full 32-bit data
bus and a 26-bit address bus providing a uniform 64Mb address space. The
processor is pipelined so that all parts of the system can be usefully
employed in every cycle when executing register-to-register instructions.
The ARM has an instruction set of 44 basic instructions. Each instruction
contains a condition code that causes an instruction to be skipped if the
condition is not satisfied. This allows highly efficient software to be written
and has benefits for both in-line and branching sequences. The ARM
contains twenty seven 32-bit registers which partially overlap, allowing
the instant preservation of register contents for context switches
associated with interrupt servicing.

The ARM has four modes of operation. Besides the normal 'User Mode', a
'Supervisor Mode' is provided for Operating System software. Supervisor
Mode allows certain operations to be performed which are not permitted
in User Mode, in particular those that directly refer to peripheral devices.
The two other operating modes deal with interrupt processing. The ARM
has two levels of interrupts: 'normal' and 'fast'. Interrupt servicing causes
a change of processor mode as appropriate and also switches in the
shadow registers for the relevant mode.

The ARM may be used in self-contained computer systems with minimal
hardware support. However, three other ARM-related chips are available
to workstation designers. These are discussed here.

AOS-8 17

Archimedes Operating System

The MEMC Memory Controller
The memory controller, or MEMC, is responsible for the interface between
the ARM and the video controller (VIDC), I/O controller (IOC) and low-cost
dynamic memory devices which form the main RAM.

The current version of the MEMC can support up to 4Mb of physical memory
and provides all the necessary timing and refresh signals that cheap
dynamic RAM chips require. The MEMC contains an address translation
table which maps some of the logical address space of the ARM on to the
physical memory available, simultaneously providing a three-level
protection system. This assists with 'virtual memory' and allows multi­
tasking operating systems to be implemented without extra hardware.

The MEMC also supports a number of Direct Memory Access (OMA) channels
which are used by the vroc to keep the display, cursor and sound channels
running with minimal processor intervention.

The VIDC Video Controller
The video controller, VIDC, is a combined video and audio processor. It
enables the generation of video images at a number of different pixel
resolutions and bits-per-pixel. The VIDC also contains a colour mapping
palette to allow the displayed colours to be selected from a range of 4096
possible hues.

Stereo sound is also generated by the VIDC and filtered by off-chip
electronics into two channels of high-quality audio.

The current version of the vroc is capable of generating colour displays of
up to 640 by 512 pixels of four bits-per-pixel. A small amount of extra
circuitry (fitted to Archimedes 400-series computers) allows a 1280 by 960
monochrome display to be produced, rivalling the image quality of
engineering workstations in the £20,000 price region.

The IOC Input/Output Controller
The input/ output controller, or IOC, provides peripheral and interrupt
control signals with programmable timing parameters to suit most
applications.

The IOC contains four independent 16-bit programmable counters -
configured as two timers and two baud-rate generators (for RS232 and
keyboard communications). A bi-directional serial keyboard interface is
also included.

18

RISC Technology

Four programmable types of peripheral access timing are generated by the
IOC to control 'podules'. The IOC also deals with interrupt requests, masks,
and peripheral and podule status.

Finally, the IOC provides a number of direct control lines (some bi­
directional) which may be used to drive peripherals and 1/0 circuitry.

Conclusion
The ARM and its related chip-set form a very powerful 32-bit computer
core which takes up less than ten square inches of circuit board space. When
coupled with RAM, ROM, disc drives and display electronics, a complete
workstation can be constructed with a component count which would, just
a few years ago, have been inconceivably low. It is a tribute to Acorn's
design staff that this impressive array of devices is available well in
advance of most competitors' ruse micros, let alone support circuits.

19

2 · The ARM Instruction Set

This chapter provides an introduction to the ARM instruction set and to the
assembly language in which it is programmed. If you already have
experience of ARM assembly language programming or you have read
Archimedes Assembly Language: A Dabhand Guide then you will probably
want to skip on to the next two chapters. We include a brief synopsis here
for those who have little or no prior experience of ARM assembly
language.

An appendix at the back of this book discusses the extensions to the ARM
instruction set which allow floating-point operations to be coded in
assembly language. Because the assembler built into the BASIC v interpreter
does not cater for these instructions we have included a program on the
disc which accompanies this book to allow such instructions to be
assembled.

The Programmer's Model
The ARM provides sixteen 32-bit registers which are usually known as RO
to RlS. In fact, a number of 'shadow' registers are provided in the
processor and these are switched in automatically when the processor
mode changes. This means that interrupt service routines don't need to
save registers explicitly and can thus be executed more quickly. So while
only 16 registers are accessible to the programmer at any one time, a total
of 27 are actually provided.

The 'programmer's model' of the registers is shown in the figure 2.1 on the
next page.

R15: The Program Counter
Unlike RO to Rl4, RlS is not a general-purpose register; instead, it contains
the Program Counter (PC) and the Processor Status Register (PSR). The
program counter occupies 24 bits of the register, with the remaining eight
bits used as the PSR. Six of the PSR bits contain status flags and the
remaining two indicate which of the four processor modes prevails. The
exact arrangement of bits is illustrated in figure 2.2 overleaf.

20

The ARM Instruction Set

Bit

RO

R1

R2

R3

R4

RS

R6

R7

RS RS_f

R9 R9_f

R10 R10_f

R11 R11_f

R12 R12_f

R13

R14

R15(PC)

R13_f

R14_f

R13_i 11 R13_s

R14_i 11 R14_s

User FIQ IRQ Super
Processor Mode

Figure 2.1. ARM programmer's model - register map.

31 30 29 28 27 26 25 2 1 0

RlS: I N I Z I C I V I I F I Program Counter.... is1 iso I
Figure 2.2. RlS - arrangement of bits.

The processor views memory as a linear array of bytes but accesses
memory on four-byte units known as 'words'. ARM instructions, pointed to
by the PC, are 32 bits long and must be 'aligned' within one memory word.
Thus although the processor address space is i26 bytes (or 64Mbs),in fact

21

Archimedes Operating System

only 24 bits are required because word-alignment renders the bottom two
bits unnecessary.

Six of the flag bits may be further subdivided into two groups. The top four
bits are arithmetic flags:

N Negative flag
Z Zero flag
C Carry flag
V Overflow flag

The other two bits are the interrupt disable flags:

I Interrupt request disable flag
F Fast interrupt request disable flag

The bottom two bits of RlS indicate the processor mode, viz:

00 User Mode
01 Fast Interrupt Service Mode
10 Interrupt Service Mode
11 Supervisor Mode

Of course, the virtue of having the PC and PSR accessible through RlS is
that the ARM instruction set is consistent with respect to all registers.

You should note that R14 is often used as a temporary store for the PC
during subroutine calls - this is discussed with the Branch with Link
instruction below.

Conditional Execution
Each ARM instruction contains a field determining whether or not the
instruction is executed, depending on the state of the arithmetic flags N, Z,
C, and V. In addition, there are the two conditions 'Always' and 'Never'.
The sixteen possible condition combinations are shown in table 2.1, along
with their two-letter ARM Assembler mnemonics:

22

Mnemonic
AL
a:
cs
H.:l
GE

GT

Meaning
AL ways
Carry Clear
Carry Set
EQual
Greater than or Equal

Greater Than

Flag Settings

C=O
C=l
Z=l
N=l and V=l or
N=O and V=O
N=l and V=l and Z=O or
N =0 and V =0 and Z=O

The ARM Instruction Set

Mnemonic Meaning Flag Settings
HI Higher (unsigned) C=l andZ=O
IE Less than or Equal N=l and V=O or

N=O and V=l or
Z=l

LS Lower or Same (unsigned) C=O or
Z=l

LT Less Than N=l and V=O or
N=Oand V=l

MI Minus (Negative) N=l
NE Not Equal Z=O
NV Ne Ver
PL PLus (Positive) N=O
vc o Verflow Clear V=O
vs o Ver flow Set V=l

Table 2.1. Conditional mnemonics.

Two synonyms are also in common use and are supported by the
assembler:

ID LOwer (unsigned) is equivalent to Carry Clear (CC)
HS Higher or Same (unsigned) is equivalent to Carry Set (cs)

23

Archimedes Operating System

ARM Assembler Command Syntax
In the discussion of the ARM instructions in the rest of this section, the
following syntax is used to indicate instruction components:

{}

(ab)

#<exp>

Rd

Fd

Rx,Ry,Rz

Fx, Fy

shift

indicates optional components

indicates that either a orb but not both may be used

introduces an immediate value (see below also)

indicates an expression which evaluates to a constant

indicates the destination register for the result

floating point destination register

indicate source registers

floating point source registers

indicates that one of the following options should be used:

ASL (Rs #<exp>) Arithmetic shift left by contents of
Rs or expression

LSL (Rs #<exp>) Logical shift left etc.
ASR (Rs #<exp>) Arithmetic shift right etc.
LSR (Rs #<exp>) Logical shift right etc.
ROR (Rs #<exp>) Rotate right etc.
RRX Rotate right by one bit with extend

Shifted Operands
The ARM has a 32-bit 'barrel shifter' which is capable of shifting an
operand an arbitrary number of bit positions before using it in an
instruction. This leads to two possible shift instruction types for the second
operand of data processing instructions:

1. The shift is specified by using an extra register, Rs, given after the
shift operation mnemonic. This specifies that the instruction's
operand is to be shifted by the number of places contained in the
given register. For example, if the shift register, Rs, contained 27,
then the operand would be shifted 27 places before being used by
the instruction.

2. The shift is specified by using an immediate constant. Here the
absolute number of places by which to shift the operand, is given as
a immediate constant number preceded by a '#' as normal.

24

The ARM Instruction Set

Note: It is pointless to try to attempt to shift an instructions operand if the
operand is given itself as an immediate constant. Shifts are only valid,
therefore, when the second operand to an instruction is given in a register.
No matter how a data shift is specified, the maximum number of places to
shift by is always 31.

Branch Instructions: B, BL
Syntax:

B{L){cond) <expression>

Like all other ARM instructions, the following instructions are only
executed if the condition field is true. The ARM assembler assumes a
condition of AL ways (ensuring execution) unless you specify otherwise.

There are two different kinds of branch instruction: B (for Branch) and BL
(for Branch with Link). The mnemonics are chosen to produce conditional
instructions which are similar to their equivalent 6502 instructions, eg, BEQ
for Branch if EQual.

Pure branches simply perform a relative branch to the specified offset if the
condition field of the instruction is true. Thus, a minimal (and quite useless)
loop is assembled as follows:

.labe l BAL label

Unlike the 6502, the ARM branch instruction takes an offset which is almost
large enough to encompass the entire address space of the processor. You
will recall that this is 64Mbs or 226 bytes, but because instructions must be
word-aligned, only 24 bits are required in the instruction. This means that
branch instructions can reference any word in the entire 64Mb address
space and 'out of range' errors cannot occur.

Branch with Link (BL)
The Branch with Link instruction differs from the Branch instruction in that
it provides a return address for the branch, ie, a subroutine facility. Before
the branch is made (if the condition field allows) the PC is adjusted and
saved into R14 to provide a 'link' to the address of the instruction after the
Branch with Link.

To return from a Branch with Link several possible mechanisms are
available according to two criteria: whether the PSR should be restored or
not and whether R14 is still valid or needs to be retrieved from a stack. The
former affects whether subroutines can alter the flags and the latter is

25

Archimedes Operating System

necessary to support more than one level of subroutine calling. These
mechanisms are outlined below:

Return through R14 and restore PSR
Return through R14 (PSR unaltered)
Return popping address from stack
and restore PSR
Return popping address from stack
(PSR unaltered)

MOVS PC,R14
MOVPC,R14

LDMFDRy!,{PC}"

LDMFD Ry!,{PC}

where Register 'Ry' is acting as the stack pointer. These instructions will
make a little more sense when you have read the whole chapter!

Arithmetic and Logical Instructions
Syntax:

<mnemonic> { cond){ S) Rd, Rx, (Ry {,shift) #<exp>)

or where instruction requires only one source parameter:

<mnemonic>{cond){S) Rd, (Ry{, shift) #<exp>)

These instructions perform fundamental data processing - movements and
operations between registers. They are listed below in table 2.2:

Mnem. Function
ADC Add with carry
ADD Add without carry
SBC Subtract with carry
SUB Subtract without carry
RSC Reverse subtract with carry
RSB Reverse subtract without carry
AND Bitwise logical AND
BIC Bitwise logical AND NOT
ORR Bitwise logical OR
EOR Bitwise logical EOR
MOV Move
MVN Move NOT

Result using Rd, Rx, Ry
Rd=Rx+Ry+C
Rd=Rx+Ry
Rd=Rx-Ry-(1-C)
Rd=Rx-Ry
Rd=Ry-Rx-(1-C)
Rd=Ry-Rx
Rd=RxANDRy
Rd=Rx AND (NOT Ry)
Rd=RxORRy
Rd=RxEORRy
Rd=Ry (Rx not used)
Rd=(NOT Ry) (Rx not used)

Table 2.2. The arithmetic and logical instructions.

All of these instructions place the result in the destination register 'Rd'
without affecting memory in any way.

26

The ARM Instruction Set

In addition, each of these instructions may use a shifted operand as
described earlier.

The 'S' option in the instruction controls whether the PSR flags are affected
by the result of the operation. When 'S' is present the arithmetic operations
affect the N, Z, C and V flags, and bitwise logical operations affect the N, Z
and C flags (C being affected if shifted operands are used).

If RlS is specified as the destination register then 'S' is used to decide
whether all 32 bits of RlS are updated (if S is present) or just the 24 PC bits
(if S is not present). Note that in User Mode the mode bits and the I and F
flags cannot be altered. Where RlS is used as a source operand, if RlS is
used as the first operand (Rx) only the 24 bits of the PC are available, but
when employed as a second operand (Ry) all 32 bits are available.

Comparison Instructions
Syntax:

<mnemonic>{cond}{P} Rx, (Ry{,shift} #<exp>)

The comparison instructions are much the same as the arithmetic and
logical instructions except that they always set the flags (ie, 'S' is always
implied) and they do not return a result.

The comparison instructions are as follows:

Mnem. Function Arithmetic/logic used to set flags
CMN Compare (negative) Rx+Ry
CMP Compare Rx-Ry
TEQ Test equal bitwise Rx EOR Ry
TST Test bitwise Rx AND Ry

Besides their fundamental function of setting the flag bits according to the
result, the comparison instructions may also be used to force the PSR bits to
a specific state by means of the 'P' option. When present, the 'P' option
causes the top six bits and the bottom two bits of the result to replace the
PSR flags and mode bits in the corresponding positions.

Multiplication Instructions
Syntax:

<mnemonic>{cond}{S} Rd,Rx,Ry{,Rz}

The ARM multiplication instructions (detailed below) perform integer
multiplication on two full 32-bit operands, giving the least significant 32

27

Archimedes Operating System

bits of the result. The Multiply and Add instruction also adds the third
operand into the result last of all.

Mnemonic Function Arithmetic used
MUL Multiply Rd=Rx*Ry
MLA Multiply and add Rd=(Rx*Ry)+Rz

The PC may not be used as the destination register (a quite meaningless
operation after all). Nor may the destination register Rd be the same as Rx.
The 'S' option controls whether the N and Z flags are set by the result. The
V and C flags are unchanged and undefined, respectively.

A full 64-bit result may be generated with the following sequence:

. fullmul tiply
; Replace x,y , p , q and t by r egist e r numbers
; pq = x * y
; Regi ster t i s used for temporary space

; Break x and y i nto 1 6bit numbers
MOV t, x, LSR #16
MOV p , y , LSR #1 6
BI C x , x ,t , LSL # 1 6
BIC y , y , p ,LSL #1 6

; Mu l tiply the chunks together i n p airs
MUL q , x , y
MUL y , t , y
MUL x , p , x
MUL p ,t ,p

;Add the products up ,
; with careful cons i deration for carry ' s
ADDS x , y,x
ADDCS p , p , #&10000
ADDS q , q , x , LSL #1 6
ADC p , p , x , LSL #16

The ARM does not provide a d ivision instruction, but a simple section of
code to achieve this is listed below:

28

.divide
; Divide RO by Rl
CMP RO , Rl ;Test if result i s zero
MOVMI R0 , #0 ;If it is, give r esult *
MOVMI PC , Rl4 ; and return
CMP Rl , #0 ;Test for divi sion by zero
ADREQ RO,divbyzero ; and flag an error
SWIEQ "OS GenerateError " ; when necessary
STMFD Rl3T, {R2 , R3}
MOV R2,#l

The ARM Instruction Set

MOV R3,#0
CMP Rl, #0
.raiseloop
BMI raisedone
CMP Rl,RO
BHI nearlydone
MOVS Rl,Rl,LSL #1
MOV R2,R2,LSL #1
B raiseloop
.nearlydone
MOV Rl,Rl,LSR #1
MOV R2,R2,LSR #1
. raisedone
CMP RO,Rl
SUBCS RO,RO,Rl
ADDCS R3,R3,R2
MOV Rl,Rl,LSR #1
MOVS R2,R2,LSR #1
BCC raisedone
MOV R0,R3
LDMFD R13!, {R2,R3}
MOV PC,R14

;Accumulate result

;Move result into RO *

; and return

.divbyzero ;The error block
EQUD 18
EQUS "Divide by Zero"
EQUB 0
ALIGN

; * Remove the lines marked with asterisks to
; return RO MOD Rl instead of RO DIV Rl

Single Register Load and Store Instructions
Syntax:

<mnemonic> {cond}{B}{T} Rd, <addre ss>

Although the ARM has a large number of internal registers for efficiency, it
is of course necessary to have some way of loading and storing the
contents of these registers from and to main memory. It is a tenet of RISC
philosophy to minimise the complexity of these instructions, and the ARM is
no exception. The ARM load and store instructions are shown below:

Mnemonic
WR
STR

Function
Load register
Store register

Both of these instructions deal with a register (to be loaded or stored) and
an address calculated with one of seven addressing modes.

29

Archimedes Operating System

The whole 32 bits of the register or memory location concerned are affected
unless a 'B' is added to the mnemonic in which case only a single byte is
transferred.

The simplest addressing mode takes a register number, the specified
register containing the address to load from or store to. This is known to
users of most other microprocessors as 'register indirect' addressing.

Other options include adding an immediate value or the contents of
another register to the address contained in the first register. This is known
as pre-indexed addressing since the calculation of the final address is
performed before the load or store takes place. The register may
optionally be updated with the result of the address calculation by
appending an exclamation mark '!' after the addressing mode.

The syntax of the pre-indexed address modes is as follows:

Address calculation
Contents of Rx
(Contents of Rx)+m
(Contents of Rx)+(contents of Ry)
(Contents of Rx)+
(contents of Ry, shifted bys bits)
(Contents of Rx)+
(contents of Ry, shifted by the

number of places held in Rs)

Syntax
[Rx]
[Rx,#m]{!}
[Rx,Ry]{!} .

[Rx,Ry,shift #s]{!}

[Rx,Ry,shift Rs]{!}

Alternatively, the address calculation may take place after the load or
store, such addressing being known as post-indexed addressing. Post­
indexed addressing automatically writes the result back into the specified
register, so an exclamation mark is never needed.

The syntax of the post-indexed addressing modes is shown below:

Calculation performed and written back Syntax
(Contents of Rx)

- then increment Rx by 'm' [Rx],#m
(Contents of Rx)

- then increment Rx by contents of Ry [Rx],Ry
(Contents of Rx)

- then increment Rx by contents of Ry,
shifted bys bits) [Rx],Ry,shift #s

Remember that, in all post-indexed addressing modes, the data is obtained
from the address held in Rx alone. It is only after this has happened that
the contents of Rx are changed by adding the suitably specified offset. In

30

The ARM Instruction Set

pre-indexed addressing, this modification of the address in Rx takes place
first. The data is then loaded from the newly modified address. Finally, if
write back is selected, the new modified address, just used, is stored back in
Rx, replacing its original contents.

If you give the assembler a simple expression as the address it will
generate a pre-indexed instruction using RlS (PC) as the base register, thus
providing 'position-independent' assembly. An error will be generated if
the address is outside of the range of the instruction (+ or - 4095 bytes).

Note also that it is not possible to use a register to specify a shift amount
with the LOR and STR instructions.

If 'T' is added to the mnemonic the MEMC memory controller is forced to
cause an address translation in Supervisor Mode (which would not usually
happen). In ,User mode address translation takes place all of the time so
this is unnecessary.

Multiple Register Load/Store Instructions
Syntax:

<mnemonic>{cond) (I D) (AB) Rx!!),<Rlist>{~)

When writing subroutines and procedures it is frequently necessary to
preserve the contents of several registers; usually this is achieved by
pushing them on to a stack so that they may be popped off later. To save
(programming) time the ARM provides instructions for loading and storing
any or all of the internal registers. In fact, one instruction suffices for each
operation because individual bits in the instruction indicate which registers
are to be dealt with.

The multiple register instructions are summarised below:

Mnemonic
LDM
STM

Function
Load multiple registers
Store multiple registers

The contents of register Rx are used as the base address for the load or
store operation. The list of registers 'Rlist' will be loaded from or stored to
memory, starting with the lowest numbered register.

Two mandatory components of the instruction affect its operation: the (ID)
field controls whether addresses loaded from or saved to are Increased or
Decreased from the base address in Rx. It is therefore possible to create
stacks which extend either upwards or downwards in memory.

31

Archimedes Operating System

The second control field (A B) indicates whether the address used is
modified after or before the load or store operation. If 'A' is used, the first
register is dealt with and then the address is updated before the next
register. Alternatively, using 'B' causes the address to be updated before
each register is dealt with. To simplify the programmer's life, synonyms
are available for these two control fields: an 'F' (for 'Full stack') may be
used in place of 'B' and an 'E' (for 'Empty stack') may may be used instead
of 'A'. Similarly, the second letter may be replaced with 'D' for 'Descen­
ding' or 'A' for 'Ascending'. All Acorn software uses Full Down (FD) stacks
and it is recommended that you follow suit.

Software Interrupts
· Syntax:

SW! <expression>

The remaining ARM instruction is the Software Interrupt (SWI). The
purpose of the swr instruction is to allow the Operating System to make its
facilities available to the user without allowing the user any direct control
in Supervisor Mode. On encountering this instruction, ARM changes to
Supervisor Mode (thus preserving the user's R13 and R14 registers in their
own register bank) and jumps through the swr vector to allow the
instruction to be processed. The assembler evaluates the expression that
follows the SWI mnemonic into a 24-bit field which is used to determine the
action required.

Both the Arthur and RISC OS Operating Systems use swrs as the funda­
mental control mechanism for user software. The 24-bit swr number is
decoded and used to select the Operating System routine to be performed
before returning to the next instruction of the user's program. We shall see
a great deal more of swrs throughout this book.

32

3 · The BASIC V Assembler

Basic Concepts
Having examined the instructions available to ARM programmers we need
to devote some attention to the ARM assembler which allows us to create
machine code programs from the keyboard.

Of course, it would be possible to hand assemble the instructions for our
program by looking up their opcodes as numerical values and composing
complete instructions. However, quite aside from the effort involved in this
process, the complexity of the instructions at the individual bit level is such
that only a real masochist would attempt this more than a couple of times.

Instead, Acorn has followed the tradition started by the BBC Micro­
computer and included an assembler in the BASIC interpreter. This is to
Acorn's benefit because the assembler can take advantage of many of the
housekeeping facilities that BASIC needs for itself; it is also to the pro­
grammer's benefit for much the same reasons!

Most readers will be familiar with the 6502 assembler provided in BBC
BASIC for the BBC Microcomputer. Whether you are or not, it is worth
reading the synopsis that follows because some significant extensions are
present in the ARM version.

Using the Assembler
In common with the 6502 assembler the ARM assembler is entered when
ARM BASIC encounters an opening square bracket ' ['. Similarly, a closing
square bracket '] ' exits the assembler and returns control to the BASIC
interpreter.

Variable Initialisation from BASIC
BASIC and the assembler are inexorably intertwined in that they share the
same variables and workspace. Thus it is possible to initialise variables to
useful values from BASIC and then employ them in the assembler. For
example, to create a constant we might say:

AOS-C 33

Archimedes Operating System

Screen_mode= 128

and thereafter employ 'Screen_mode' throughout our assembler program.
This has the virtue that we need only alter this one variable and re­
assemble our software to update all its occurences.

Labels in Assembler Source
The assembler takes advantage of BASIC in a similar way to allow you to
use alphanumeric labels in the assembler program. Each location in the
program which needs to have a label is marked by preceding it with a full
stop. For example:

.my_label MOV RO,Rl

labels the address at which the 'MOY RO,R1' instruction is stored as
'my _label' to allow branches and references to it elsewhere.

The assembler does this by creating a BASIC variable of the same name, ie,
my _label, and setting it to the value of P% (see later) (\lt the time the label
was encountered. When a reference to the label is necessary elsewhere, it
may simply be referred to by name, eg:

BLEQ my_label

Again, this has the virtue that only the label needs to be moved before re­
assembly in order to update all references to it.

Allocating Memory
The ARM assembler deposits the object code it generates into memory at a
defined place (see later). In order to prevent BASIC and the assembler from
attempting to make conflicting use of this memory we need to advise BASIC
that it should not be corrupted. This is achieved using a special case of the
BASIC 'DIM' operator. To reserve 1000 bytes for assembler object code we
might use the following:

DIM object_code% 1000

which reserves at least 1000 bytes and leaves the BASIC variable
'object_ code%' pointing to the first byte. Note that memory reserved in this
way is guaranteed to be word aligned, ie, its start address will always be
on a word boundary (address divisible by four).

You may find this mechanism useful for reserving space for tables or to
allow you to refer to large amounts of data from the assembler.

34

The BASIC V Assembler

Assembling Into Memory
Once you have reserved an area of memory into which the assembler may
put the object code it produces, you must advise the assembler of the
location of the memory. The assembler shares the BASIC variables P% and
0% for this purpose.

P% is used to point to the start of the memory area, eg:

P%=objec t_code%

When assembly begins, the first instruction assembled will be placed at P%
and the value of P% will then be inceased by four automatically after
assembling each instruction so that it points to where the next instruction
should be placed. Thus, when the assembly is complete, P% will be left
pointing to the byte after the last instruction assembled.

Offset Assembly
The use of P% as a pointer has the drawback that you must assemble your
code at the position where it will ultimately be used. This is not always
convenient. Programs which need to be executed at a different address to
that at which they are assembled may contain references to memory
locations which are fixed at assembly time. To allow for this, the variable
0% may be used to set the address at which the object code is to be stored.
The assembler responds by placing the object code in memory starting at
0% but uses P% to resolve any absolute memory references in the object
code. 0% and P% are incremented together in this case.

Of course, you need to advise the assembler that you wish the object code
generated to be executed in a different place - this is achieved by setting bit
two of the assembler directive OPT and is discussed in more detail below.

Dealing With Forward References
As we saw above, the assembler allows labels to be placed in the source
program to make the program easier to understand. However, it is
possible for a situation to arise in which the assembler cannot immediately
resolve all references to labels. Consider the following program fragment:

B f o rward label

.forward label

35

Archimedes Operating System

which on its own would cause an assembler error ('Unknown or missing
variable'). As you can see, there is a reference to a label which has not yet
been encountered by the assembler and whose address is therefore
unknown. To overcome this we can perform the assembly twice, discarding
the results (and errors) from the first attempt. This is known as 'two-pass'
assembly and should be used in preference to other approaches because it
covers all eventualities.

The assembler directive OPT is used to control the assembly, particularly
with regard to forward reference errors and where the object code is to be
stored. The bottom three bits of the value following an OPT control these
assembler features and are used as follows:

Bit Effect if set
0 Assembler displays assembly listing
1 Assembler reports assembly errors
2 Assembler places code at 0%, not P%

The listing flag (bit 0) simply controls whether the assembler displays the
program as it assembles; it has no effect on its execution.

The assembly error flag (bit 1) allows you to suppress errors during the first
pass of two-pass assembly. It is usually cleared for the first pass (to sup­
press errors) and set for the second pass (to show up errors not concerned
with forward references).

The code destination flag (bit 2) has been discussed above and controls
whether the object code is placed at P% (if clear) or 0% (if set).

Implementing Two-pass Assembly
The simplest way to implement two-pass assembly is to enclose the entire
assembler part (between square brackets) within a FOR ... NEXT loop which
changes OPT as necessary. Typically it would look something like this:

FOR pass%=0 TO 3 STEP 3
P%=object code%
[OPT pass%
... assembler program here
l
NEXT pass

Notice that this is the·simple case where the object code is placed at P%.
The modifications required to support assembly to 0% are left as an
exercise to the reader.

36

The BASIC V Assembler

Other Assembler Directives
The ARM BASIC v assembler supports some other useful directives for
saving time when writing and assembling programs. These are sum­
marised below:

Directive
EQUB value
EQUW value
EQUDvalue
EQUS string

ALIGN

Effect
Allocates one byte and pokes (value MOD &FF)
Allocates two bytes and pokes (value MOD &FFFF)
Allocates four bytes and pokes (value)
Sets aside as many bytes as neccessary and puts
the ASCII string in them.
Increments P% and 0% to align them to the next
word boundary

ADR reg,address Assembles an instruction to load 'address'
into register 'reg'

The four 'equates' set aside the specified number of bytes from P% and
initialise them as described. EQUB, EQUW and EQUD take an expression
which evaluates to an integer, whilst EQUS should be followed by a string
expression. Because strings are rarely a multiple of four bytes in length it is
neccessary to ensure that P% and 0 % are aligned on a word boundary
before continuing the assembly (remember that instructions must be word­
aligned). A typical sequence for initialising a zero-terminated string is thus:

EQUS "Thi s i s a s t ri ng"
EQUB 0
ALIGN

Position Independence of Object Code
In order that ARM assembler programs should be as versatile as possible it
is good practice to make them 'position independent'. This is to say that the
program contains no 'absolute' or fixed references to itself, for example,
tables or other data. In fact, a requirement is that extensions to the
Operating System (known as 'modules') be position independent because it
frequently relocates them in memory according to circumstances.

The simplest way to achieve position independence is to ensure that all
references are given relative to the PC. It is with this in mind that the ARM
branch instructions are all relative rather than absolute.

37

Archimedes Operating System

The assembler directive ADR assists by automatically generating an ADD or
SUB instruction which will ensure that the specified register contains a
position independent pointer to the specified address (by using the PC in its
calculation). Consistent use of this directive allows you to ensure that your
software is position independent.

An acid test for determining whether software is truly position indepen­
dent is to assemble it at two different locations and compare the listings
produced using a text editor or file comparison program. By scrutinising
the differences between the two listings it is possible to identify instructions
which need re-writing.

Executing Assembler Programs
Once a program has assembled correctly it is usually a good idea to save
the object code! The length of the object code can be determined by
subtracting the start address from P% (or 0%), eg:

PRINT"Object code starts at "-objcode code%" and is "-P%-
objcode_code%" bytes long." -

This information is enough to allow you to save it using the operating
system command '*SAVE'. The simplest syntax of this command is:

*SAVE<filename><startaddr><endaddr>{<executeaddr>{<reloadaddr>JJ

or alternatively:

*SAVE<filename><startaddr>+<length>{<executeaddr>{<reloadaddr>}}

where all of the address-related information is assumed to be entered in
hexadecimal and the execute and reload addresses are optional.

Once the object code has been saved it may be executed in several ways.
Firstly, it may be executed in memory without reloading by means of one of
two BASIC commands:

CALL startlabel

or alternatively:

variable=USR(startlabel)

with 'startlabel' being either the name of the entry point or its address in
hexadecimal. Either of these commands will start executing the object code
at the specified address, hopefully producing the expected results!

Alternatively, the saved object code may be executed by re-loading it and
running it. The operating system deals with loading automatically if you

38

The BASIC V Assembler

type any of the following three synonymous commands to run the object
code:

*<filename>

or:

*RUN <filename>

or:

*/<filename>

For more information on *SA VE and its address parameters consult the
Archimedes User Guide or Programmer's Reference Manual.

Conclusion
The ARM BASIC v assembler allows programs to be written quickly and
easily by providing the programmer with a familiar environment in which
to work (BASIC) and extending it very slightly to cater for the quirks of
assembler programming. This successful formula was adopted with the
BBC Microcomputer and has been updated to deal with the complexities of
the ARM.

39

4 · The Operating System

The 'Operating System' is the name given to the fundamental software in
a computer which provides the environment in which the user works.
Without an Operating System it would not be possible to type commands at
the keyboard, see those commands on the display or even execute
programs. The Operating System relieves the user of the complexities of
controlling the various peripheral devices connected to the computer and
allows the computer to be operated with meaningful commands rather
than by machine-code programming. At the same time, the Operating
System software is broken up into many distinct routines which may be
called individually, so as to allow programmers to take advantage of
useful facilities that have already been written.

The most crucial role of the Operating System is in controlling the
input/ output devices connected to the computer: in particular, the
keyboard, screen display and storage devices such as disc drives. This is
achieved with the help of hardware 'interrupts' - signals from peripherals
which indicate that they need attention from the computer. If you have
programmed in assembly language on a BBC Microcomputer then you are
likely to be aware of the importance of interrupts. They are equally
important in the Archimedes and, as we saw in the introduction, the ARM is
very competent at servicing interrupts quickly.

The Acorn Archimedes computers are sophisticated and powerful machines
which are designed to be expanded by the addition of new software and
new hardware. Clearly, the Acorn staff responsible for the design of the
computer cannot think of every possible extension which their myriad users
might devise, so instead they concentrate on making the Operating System
as general as possible while allowing it to be expanded with ease.

Communicating with the OS
There are two mechanisms by which users can communicate their wishes to
the Operating System. The more familiar of the two is the keyboard
'command line' which interprets commands beginning with *. The OS
displays an asterisk whenever it is ready for a command to· be typed by the
user for execution, and for this reason its prompt symbol is itself an

40

..,
'

The Operating System

asterisk (useful because it saves the user from having to type one). When
this prompt is visible, any of the Operating System commands (or
commands supported by other resident software) may be entered for
execution. The Operating System will respond either by taking the
specified action or reporting an error if the command was not understood.
Because the command line is so crucial to the operation of the Operating
System we shall examine it in greater detail later.

The second way in which communication with the Operating System can
take place is through the use of 'software interrupts' or 'swrs'. As we saw
in the previous chapter, the ARM has an instruction known as swr which
effectively acts as a subroutine call into the Operating System. This
instruction always takes a 24-bit parameter to indicate which operation is
desired. It may also require other parameters to be placed in the ARM
registers according to the operation.

The reason that these two different techniques exist is simply one of
efficiency. For human beings, writing a short piece of assembler every time
we want the computer to do something is seriously inefficient. On the other
hand, the converse is true for programs (where composing and issuing
long text strings is equally inefficient - particularly in terms of memory
usage). Thus, the command line exists to make it easier for the user to enter
quick commands, while the swr instruction is used to achieve all these
effects and others from within programs.

It is worth noting that in fact the 'command line interpreter' (cu) is actually
an Operating System routine which may be called by means of a swr, so in
reality there is only one way of communicating with the Operating System,
viz using swrs. However, it will be convenient to think of the two as being
distinct.

How SWis work
The 24-bit swr identification field is large enough to allow just over sixteen
million different swrs to be specified. In practice, this field is divided up into
several groups to allow different kinds of SWI to be numbered in related
ways. The meaning of the individual swr number bits is as follows:

Bits 23-20 These top four bits are used to identify the Operating System
of which the SWI is a part. All four bits must be set to be zero
to indicate that the SW! is relevant to Arthur and RISC OS;
other Operating Systems will use different values .

41

Archimedes Operating System

Bits 19-18

Bit 17

Bits 16-6

Bits 5-0

These two bits are used to indicate which piece of software is
responsible for executing the SWI. The table below
summarises the possibilities:

Bit 19 Bit 18 Meaning
0 0 Operating System
O 1 Operating System extensions (Acorn)
1 0 Third party applications
1 1 User programs

This bit, known as the 'X' bit, is used to specify how errors
that occur during the execution of the swr should be dealt
with. It is discussed in more detail in the section on swr error
handling.

These eleven bits identify the group or 'chunk' of 64 SWis for
each specific application. Chunk numbers are allocated by
Acorn as new software requires. A few SWI chunks have ·
already been allocated to various parts of the Operating
System and filing systems. If you produce commercial
software which requires several swrs you should apply to
Acorn for a chunk number.

The bottom six bits indentify the particular swr within a given
chunk. This allows up to 64 swrs (which is more than enough)
for each application.

SWINames
Obviously, it would be inconvenient to have to remember or look up a 24-
bit number every time you wanted to call a swr from a program. To save
time, the Operating System provides a mechanism for giving SWis textual
names and then converting between SW! names and SWI numbers. Two
swrs, whose textual names are:

OS_SWINumberToString
OS_SWINumberFromString

allow the Operating System to perform these conversions. Since the
Operating System cannot pluck textual names from thin air, the author of
a particular SW! is obliged to follow a documented standard to allow these
conversions to take place. This is discussed in the section on 'modules'.

Listing 4.1 uses os_SWINumberToString to print out the names of the first
256 SWis. os_SWINurnberToString returns each swr name at the location
called buffer% and the name is printed using os_ WriteO.

42

The Operating System

Both the ARM BASIC command 'SYS' and the ARM BASIC assembler perform
this conversion automatically whenever they encounter a SWI name
enclosed in inverted commas.

In order to make these conversions somewhat simpler to implement, the
SWI chunk :'name' followed by an underline '_' is used to prefix the SWI, so
the conversion SWis are named 'OS_ ... ' because they are provided by the
Operating System. swrs provided by other software modules do the same,
so the ADFS SWis are all prefixed by 'ADFS_ ... ' and so forth.

Note that SWI names must be spelt exactly as seen, so capital and lower­
case letters are crucial to correct SWI calling. If you mis-spell the SWI name
an error will be generated. We can only hope that in future versions of the
Operating System case independence and abbreviation of SWI names will
be permitted.

SWI Error Handling
Almost every SWI needs to deal with circumstances where an error may
arise, such as where it is passed insufficient or erroneous parameters or
because the action it tried to take failed for some low-level reason. Two
mechanisms for dealing with SWI errors are defined by the Operating
System so that programmers may take appropriate action.

In its simplest form, SWI error handling is achieved through the use of the
ARM'S Overflow flag 'V'. All SWis indicate their successful completion by
clearing this flag, a result which is easily dealt with by means of a branch
instruction after the SWI instruction. If an error arises, the SWI sets the 'V'
flag and returns with ARM register RO containing a pointer to a block of
in,ormation describing the error. SWis which behave in this way are known
as 'error-returning'.

l
e format of the error block pointed to by RO for error-returning SWis is:

Bytes 0-3 Error number
Bytes 4-n Error message (ASCII text)
Byte n+l Zero (to terminate the error message string)

Error blocks must be word-aligned and may not exceed 256 bytes in length.

The more sophisticated form of error handling is controlled by the 'X' bit in
the SWI number which was mentioned earlier. When this bit is set the SWI
will return to the calling application with the 'V' flag in the appropriate
state (as above). However, it is frequently convenient to have a general­
purpose error handler within an application (for example, the BASIC
statement ON ERROR) which deals with all errors in a consistent way. By

43

Archimedes Operating System

issuing the SWI instruction with the 'X' bit clear, error control is passed by
the Operating System to the currently defined 'error handler', which takes
appropriate action. SWis which behave in this way are known as 'error
generating'. The error handler is established through the use of an
Operating System 'vector', and this and other vectors are discussed in the
next section.

The SWI naming system allows the state of the 'X' bit to be controlled by
prefixing the SWI name with a capital 'X'. The default for SWI error control
is the error generating state, ensuring that errors are flagged by the
current error handler automatically. Error-returning SWis use the 'X'
prefix, so the error-returning form of the name conversion SWI mentioned
above is:

XOS_SWI NumberToString

Note that it is vital to remember to include software to deal with errors if
the error-returning form is being used.

Error Handling - Numbering
In much the same way as swrs are uniquely numbered, so the errors which
swrs produce are numbered in a consistent way. The error number field in
an error block is 32 bits long and the bits are used as follows:

Bit 31 If set, indicates a serious error from which returning is
impossible

Bit 30 Defined to be clear, but may be set to indicate internal errors

Bits 29-24 Reserved

Bits 28-3 Error generator identification field (see below)

Bits 7-0 Error number (0-&FF)

The middle two bytes of the error number form a field which identifies the
particular piece of software responsible for generating the error. This is
similar to the swr 'chunk' field, but note that it has no numerical
relationship with the chunk number whatsoever. Of the 65535 available
error generator indentification fields, a small number have been allocated
to existing software such as the Operating System. Just as for swr chunks,
software authors should apply to Acorn for an error generator field of
their own.

44

The Operating System

Error Generation
As well as swrs being able to generate errors, it is also possible for
programs to generate errors of their own in order to signal unusual
conditions. This is achieved by issuing the swr os_GenerateError with RO
pointing to an error block of the usual format, eg:

130 ADR RO,EscapeError ;Point to the error block
140 SW! "OS_GenerateError" ;Generate an error

A good example of the need for this facility is the detection and handling of
the 'ESCAPE' key being pressed. All good software regularly checks to see
whether the user has pressed the ESCAPE key, which is usually an indication
that the user wishes to abandon or cancel the current operation.

The depression of the ESCAPE key can be tested for by issuing another swr -
os_ReadEscapeState - which returns with the carry flag 'C' set if the key
has been pressed. Listing 4.2 illustrates this. os_ReadEscapeState is
repeatedly called until the ESCAPE key has been pressed (ie, until the carry is
set on return). Then, RO is loaded with the address of the errorblock
'EscapeError' and the new error is generated by calling the appropriate
swr os_GenerateError. Note that there is no return instruction following
the call to os_GenerateError: the reason for this is that your code will
never be returned to from this swr!

Listings
10 REM >List4/l
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
so
60 DIM buffer% 127
70 VDU 14
80
90 REM Loop through the first 256 SWis, find

100 REM their names and print them.
110
120 FOR swi%=0 TO 255
130 SYS "OS SWINumberToString",swi%,buffer%,127
140 SYS "OS-Write0",buffer%:PRINT
150 NEXT -
160 VDU 15
170 END

Listing 4.1. Demonstrating os_swrNumberToString

45

Archimedes Operating System

46

10 REM List>4/2
20 REM by Nicholas van Someren
30 REM Archimedes OS : A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 DIM code% 100
70 FOR pass%=0 TO 3 STEP 3
80 P%=code%
90 [OPT pass%

100 .loop
110 SWI "OS ReadEscapeState" ;Wait until Escape pressed
120 BCC loop
130 ADR RO,EscapeError ;Point to the error block
140 SW! "OS GenerateError" ;Generate an error
150
160 .EscapeError
170 EQUD 17
180 EQUS "I knew you were going to press Escape"
190 EQUB 0
200 ALIGN
210 l :NEXT pass%
220
230 CALL loop
240 END

Listing 4.2. Demonstrating os_ReadEscapeState.

5 · Command Line Interpreter

The Operating System Command Line Interpreter (OS_CLI) allows you to
use many of the functions provided by SWis without having to go to the
effort of writing an assembler program. Obviously this is more useful as
far as the user is concerned, but the penalty paid is one of speed - it takes
time for the os to decode the command and its parameters before the the
appropriate SWis are actually invoked.

Aside from the commands that the OS understands, modules may also add
to the available os_cu commands; this is how the different filing systems
provide their own device-specific commands. You too can add OS_CLI
commands provided by your own modules - this is discussed in the chapter
on modules (Chapter 11).

If you are familiar with the BBC Microcomputer MOS you will recognise the
style of Operating System commands, which are preceded by a '*'. Many
of the commands understood by the BBC MOS are also understood by the
Archimedes os, providing some consistency and making life easier for users
familiar with the BBC. Most interactive applications written for Acorn
computers provide some means for entering Operating System commands;
for example, ARM BASIC simply passes on any line that starts with an
asterisk.

To cater for the entry of * commands without having an application
running the OS Supervisor (language number O) allows the direct entry of
command lines, displaying an asterisk as a prompt and allowing you to
miss out the initial asterisk when entering the command.

OS_CLI Command Syntax
A number of other special characters may be included in os_cu commands
to affect the way in which they are processed. These are detailed below.

Leading Spaces and Asterisks
Because it is very easy to type an extra asterisk by mistake, OS_CLI ignores
all asterisks which precede commands. Similarly, all leading spaces are
also ignored so as to allow some flexibility of syntax. Unfortunately, there

47

Archimedes Operating System

is some inconsistency in the way spaces are used, particularly with regard
to 'redirection' which is discussed below.

Comments
A facility exists to tell os_cu to ignore a command line so that it may be
used as a comment: this is achieved by putting a vertical bar ' I' at the start
of the line (ie, after any leading asterisks or spaces). One reason you might
wish to do this is to allow an 'EXEC' file to contain both commands and
comments which describe the commands, or to display instructions for the
user without os_cu trying to interpret them.

Command Decoding Extensions
Several characters have reserved meanings within command lines. For
example, the forward oblique or 'slash' ('/')is used as an abbreviation for
*RUN, so the following are identical:

*RUN FileToBeRun
*/FileToBeRun

The colon (':') is used to follow filing system names to allow a temporary
change of filing system. This makes it possible to perform some quick action
on another filing system without having to explicitly change between the
two. Hence, the following command sequences are equivalent when the
ADFS is the current filing system:

*NET
*INFO $.Alex.Book.OS_CLI
*ADFS

and, rather more quickly:

*INFO NET:$.Alex.Book.OS_CLI

File Redirection
A feature of the Operating System which will be new to BBC MOS users is
'file redirection'. This allows characters to be read from files rather than
the keyboard, and characters to be sent to a file instead of the screen. Thus,
the effect of redirection is similar to having an EXEC or SPOOL file opened
automatically before the command is executed.

The 'greater than' ('>')and 'less than' ('<')symbols, sometimes known as
'angle brackets' are used to represent file redirection. To allow OS_CLI to
decode this feature braces(' { ', ') ') must also be used before and after the

48

Command Line Interpreter

redirection command, and they must be preceded and followed by exactly
one space.

As an example, here is a command which catalogues the current directory
and places the resultant output into the file 'CurrentCat' (don't forget to
follow the spacing exactly):

*CAT { > CurrentCat }

Note that the file CurrentCat will be created if it does not already exist, but
its contents will be overwritten if it does. You may display the contents of
the file CurrentCat (which will look exactly like a normal catalogue) with:

*TYPE CurrentCat

Conversely, the following command would run the BASIC program
'TestProg' with all its input taken from the file 'Proglnput':

*BASIC -quit { < Proginput } TestProg

Finally, it it possible to append any output to a file (rather than
overwriting the file if it exists) using two 'greater than' symbols, thus:

*EX { >> CurrentCat }

Once again, the *TYPE command may be used to display the new version of
this file.

These redirection commands are a very powerful way of creating
automatic command sequences, since it is possible to override the normal
input and output of any command in this way.

Command Line Aliases
os_cu commands may be assigned 'aliases' allowing more than one name
to be given to commands, this makes it possible to assign names to com­
mands which you personally prefer as alternatives for the built-in names.

os_cu supports aliases of the form 'Alias$command', where 'command' is
the name of the alias we wish to add. The os_cu command *SET is used to
set up the alias, and any parameters that follow the command may be
passed on using the pseudo-variables %0 to %9.

A good example is the case of the BASIC command MODE. Most BBC Micro
users will have, at one time or another, mistakenly typed something like
'*MODE 3'. Using aliases we can add a *MODE command to make this
possible:

*SET Alias$MODE ECHO <22> <%0>

AOS-D 49

Archimedes Operating System

(The ECHO command will be discussed shortly, but its meaning is fairly self­
evident.)

The effect of this command is to allow us to type *MODE mode_number,
whereupon os_cu will expand the alias to issue:

VDU 22,mode_number

and thereby achieve the desired effect.

The same principle can be applied to get around another common error.
Users frequently type '*>' instead of '*.' because they have not released
Shift quickly enough. To handle this we can use:

*SET Alias$> CAT

Finally, besides the parameter pseudo-variables %0 to %9 we may also use
the pseudo-variable '%*x' to pass on all of the rest of the command line
after parameter number 'x'. This is particularly useful when we are simply
providing an alias for an existing command. As an example, consider the
command 'cc' which is used to compile a program written in the language
'C'. If we wanted an alias 'compile' for this command, we would simply
need to type:

*SET Alias$compile cc %*0

and, although the command 'cc' takes a variable number of parameters,
our alias 'compile' will always work.

OS_CLI Commands
The rest of this chapter is devoted to the commands that os_cu recognises
on its own. A large number of other '*' commands are provided by the
filing systems and by other software modules; these are described in the
appropriate chapters elsewhere in this book.

When discussing the syntax of these commands we use the following
notation for parameters:

<name> a parameter name to be filled in as appropriate (without the
angle-brackets)

{<name>} an optional parameter

x I y two parameters, either of which but not both may be used

50

Command Line Interpreter

*CONFIGURE
Syntax:

*CONFIGURE {<parameter l> {<parameter 2>))

The *CONFIGURE command displays or sets the various machine options
which are stored in non-volatile memory. These are used to initialise the
machine on power-up or hard break (CTRL-Reset). It is important to note
that configuration settings do not take effect immediately, so it is usually
necessary to issue the appropriate *FX command (or similar) if you want to
change a setting right away.

When the command is issued with no parameters, all the available
configuration options are listed.

When used with one parameter, the named option is configured.

When used with two (or more) parameters, the option named <parameter
1> is configured to the value of <parameter 2> etc.

Where numerical values are required, several forms may be used:

nnn A decimal number
&nn A hexadecimal number
base_nnn The number nnn in number-base 'base', eg, 2_1111 is

the same as &F which is the same as (decimal) 15.

A huge number of possible configuration parameters exist, more than it
makes sense to cover in a book such as this. For more information refer to
the relevant section of the User Guide or the Programmer's Reference
Manual.

51

Archimedes Operating System

*ECHO
Syntax:

*ECHO <string>

This command translates the string provided as the parameter using the
Operating System routine OS_GSTrans and then prints out the result.
OS_GSTrans understands the split-bar format for control codes (eg, I B for
turning on the printer) as well as aliases and other Operating System
variables. It is also possible to include characters by putting their ASCII code
in angle brackets, for example:

*ECHO <22> <0>

has the same effect as MODE 0 in BASIC. Similarly:

*ECHO <Alias$.>

displays the alias defined for the command*. (which is equivalent to *CAT
unless the alias has been altered).

*ECHO is not particularly useful on its own, but as we saw earlier it may be
used to define new OS_CLI commands which control the VDU.

*ERROR
Syntax:

*ERROR <err o r number > <error message >

This command generates an error whose number and associated message
are supplied. This is most useful for raising errors to do with new os_cu
commands, eg:

*ERROR 123 You can• t do that!

52

Command Line Interpreter

*EVAL
Syntax:

*EVAL <expression string>

This command evaluates the expression supplied and displays the result
and is the os_cu version of the SWI call os_EvaluateExpression, which is
documented in the section on conversion facilities. It allows string
manipulation and simple arithmetic involving Operating System variables
and integers, eg:

*EVAL <alex>+l024

*FX
Syntax:

*FX <parame t e r 1> {{,} <parameter 2 > {{,} <parameter 3>}}

*FX has the same effect as it does in the BBC MOS, which is to say it calls the
appropriate os_Byte routine with the parameters supplied. For example:

*FX 5, 4

sets printer output to be directed to the Econet printer.

Either commas or spaces may be used to separate the parameters, whose
number varies according to the nature of the routine.

*GO
Syntax:

*GO {<paramet e r l > J {<argument list> }

*GO is used to begin execution of machine code at the address specified by
<parameter l>, or at address &8000 if it is not supplied. In either case, the
argument list is passed to the called program using registers. This allows
an application program to be loaded at a fixed address and then called
later, rather than using *RUN or similar.

53

Archimedes Operating System

*GOS
Syntax:

*GOS

This command, an abbreviation for 'Go Supervisor', enters the Operating
System Supervisor which then displays its familiar '*' prompt.

*HELP
Syntax:

*HELP {<keywords>}

The *HELP command has the same effect as the BBC MOS command of the
same name, ie, it displays help text on topics whose keywords are
provided.

Because Archimedes computers have a large amount of ROM there is at
least a line or two of help information on every resident command, so you
can expect a useful result from this command for almost every eventuality.
Try typing:

*HELP COMMANDS

this will produce a list of the modules currently available, each of which is
followed by a list of keywords on which more help is available. For
example:

*HELP MOUNT DISMOUNT

lists a line or two of help on the ADFS commands *MOUNT and *DISMOUNT.

It is possible to abbreviate keywords by ending them with a full stop. This
produces help on all the keywords beginning with the given sequence of
letters, so:

*HELP S.

will produce help on all the available commands that begin with an 'S'.

54

Command Line Interpreter

*IF
Syntax:

*IF <e xpression > THEN <command 1> {ELSE <command 2 > }

This very powerful statement allows commands to be executed
conditionally on the result of <expression>. If <expression> is 'true',
which is to say yields a non-zero result, then <command 1> is executed.
Otherwise, where the 'ELSE' part of the command has been included,
<command 2> is executed.

The expression is evaluated using the SWI os_EvaluateExpression in the
same way as *EV AL, so it may include system variables, integer arithmetic
or string manipulation if desired. For example, if there were two
directories - one called "1988" and one called "1989" then we could enter
the appropriate one automatically by using:

*IF <Sys$Year>="1988" THEN DIR 1988 ELSE DIR 1989

*IGNORE
Syntax:

*IGNORE {<ASCII c haracte r code>)

The *IGNORE command has the same effect as *FX 6 and is the immediate
form of the *CONFIGURE IGNORE command; ie, it sets the character which
will not be sent to the printer. The main use of this is for stripping
unwanted line feeds (ASCII 10) from the printer stream to avoid extra blank
lines. For example:

*IGNORE 10

prevents line feeds from being sent to the printer. When no character code
is supplied, all characters are sent to the printer.

55

Archimedes Operating System

*KEY
Syntax:

*KEY <key number> {<key definition>}

This command is the same as its BBC MOS counterpart. It allows a string to
be assigned to one of the sixteen function keys so that each time the key is
pressed subsequent input is provided by the defined string. For example:

*KEY 1 *GOSIM*ADFSIM*DISMOUNTIM*BYEIM

sets up function key 'fl' to enter the os supervisor (*GOS), select the ADFS
(*ADFS), dismount the currently selected disc (*DISMOUNT) and park the disc
heads if a hard disc is selected (*BYE). Notice the use of GS_Trans style
control codes (in this case IM, representing RETURN) which are decoded
before being stored as the key's definition.

The sixteen keys comprise the 'PRINT' key (zero), the row of keys labelled fl
to fl2, the 'COPY' key (eleven) and the left, right, down and up arrow keys
(twelve to fifteen respectively).

An Operating System variable called KEY$<key number> exists for each
key. This may be assigned using *SET (see below).

56

Command Line Interpreter

*SET
Syntax:

*SET <variabl e name> <string>

*SET assigns the given string to the named Operating System variable,
creating the variable if it doesn't already exist.

Variables can be either of type 'number' or type 'string', with obvious
effects on expression evaluation (you can't multiply strings!). The *SET
command is used just for strings - *SETEVAL is used for numbers (see
below).

As an example of *SET:

*SET Silly "This is a silly message"

creates and assigns the string to the variable 'Silly', which may then be
displayed with *ECHO, thus:

*ECHO <Silly>

Notice the use of angle-brackets to force *ECHO to evaluate the variable,
rather than just printing the word 'Silly'.

The OS provides a number of built-in variables which already exist and may
be altered by the user, though never deleted. They include the following:

Variable name
Sys$Time
Sys$Date
Sys$Year

Contents
Current time in the style 23:59:59
Current date in the style Fri, 31 December
Current year in the style 1988

So, to change the time we might say:

*SET Sys$Date Fri, 25 December
*SET Sys$Year 1987

In addition, other parts of the Operating System or other modules may add
further variables of their own, for example:

Variable name
Cli$Prompt
Key$1

Contents
Command line prompt string (default is '*')
String associated with function key fl

57

Archimedes Operating System

*SETEVAL
Syntax:

*SETEVAL <variable name> <expression>

This command allows numeric variables to be assigned. It evaluates the
expression using os_EvaluateExpression and then assigns it to the named
variable, creating the variable if necessary. For example:

*SET Control 0
*SETEVAL Control Control+l

*SETMACRO
Syntax:

*SETMACRO <variable name> <expression>

*SETMACRO is almost the same as *SETEV AL, but the evaluation of the
expression is deferred until each time the variable is accessed. The
assignment can therefore change each time. The classic use of this is to
have an OS_CLI prompt which is the time, thus:

*SETMACRO CLI$Prompt <Sys$Time>

which has got to be the ultimate aid for clock-watchers!

*SHADOW
Syntax:

*SHADOW {<value>}

This command is provided explicitly to allow compatibility with the BBC
MOS (on machines from the BBC B+ onwards). Values of 1 and 2 force
subsequent mode changes to use screen memory banks 1 and 2. Bank 2 is
used if no value is supplied.

58

Command Line Interpreter

*SHOW
Syntax:

SHOW {<variable name>{}}

*SHOW displays the name, type and current value of system variables.
When no variable name is supplied all variables are displayed; otherwise a
specific variable is displayed, eg:

*SHOW Cli$Prompt

which displays a result of the style:

CLI$Prompt : type String, value : Yes, Master?

By appending an asterisk to a partial variable name a wildcard effect is
introduced, so:

SHOW Sys$

will display all of the system variables. Similarly, the following will display
the current assignments of all the function keys:

SHOW Key$

*STATUS
Syntax:

*STATUS {<configuration option>}

This command allows you to examine the current setting of one or all of
the configuration options set with *CONFIGURE. When no parameter is
supplied the entire list will be displayed. Otherwise, if a valid option name
is supplied, its current setting is displayed.

For example, to display the configured screen mode:

*STATUS MODE

or to display the configured international language setting:
*STATUS COUNTRY

Don't forget that the settings displayed by *ST A TUS are those that will
come into effect next time the machine is powered-up or reset - they are
not necessarily prevailing at the time the *STATUS command is issued.

59

Archimedes Operating System

*TIME
Syntax:

*TIME

This command displays the time and date in the format defined by the
system variable Sys$DateFormat. The default is of the style:

Fri,31 Dec 1999.23:59:59

though this format can be changed by altering Sys$DateFormat - consult
the swr os_ConvertStandardDateAndTime in the section on numeric
conversion facilities for information on formatting.

*TV
Syntax:

*TV {<offset> {(,}<interlace>}}

This is the immediate form of the TV configuration option. Note that its
settings do not take effect until the next change of display mode.

The offset parameter allows the whole display picture to be moved up and
down by a number of character lines: 1 means move up by one line, 255
means move down by one line, etc.

The interlace parameter controls whether an interlaced picture is
produced: a zero switches interlace on, a one switches it off. If this
parameter is not supplied then the interlace state remains unaltered.

*UNSET
Syntax:

UNSET <variable name>{}

*UNSET deletes one or more non-system variables. If an asterisk is used
then all variables which begin with the characters supplied will be deleted.
You cannot delete a system variable, although no error will be reported if
you try to do so.

60

6 · OS CLI Related SWis

This chapter details the swrs which relate to the CLI, specifically os_cu swr
itself and the two swrs which deal with Operating System variables as
used by *SET and *SHOW.

OS_CLI (SWI &05)
Command Line Interpreter
On entry, RO should point to a command string (without any leading
asterisks) terminated by any of zero, line feed (ASCII 10) or carriage return
(ASCII 13). The string will be processed as an Operating System command
and its effects and the results returned are dependent on the command.

OS_ReadVarVal (SWI &23)
Read the Value of an OS Variable
This call allows the existence or the type and value of one or more OS
variables to be established. On entry, RO should point to a zero terminated
string containing the name of the variable(s), optionally including the
wildcards '*' to match zero or more characters and '#' to match exactly
one character. RI should point to a buffer for the SWI to use, with R2
containing the maximum size of that buffer. A special case is provided by
setting bit 31 of R2 which simply determines whether the specified
variable(s) exist by returning with R2=0 if not.

On the first call to this SWI, R3 should contain zero. If wildcard matches are
expected then subsequent calls should be made with the previous contents
of R3 preserved, its value being updated automatically by the SWI. The
'xos' form of this swr should be used where wildcard matches are expected
in order to avoid the 'no more matches' error which will be generated after
the last match is read.

R4 should contain three if the result should be expanded by os_GSTrans
before returning (see next page). Other values are ignored.

61

Archimedes Operating System

After the first call to this swr, the type and value of the specified variable
will be returned (or those of the first match in the case of wildcard
searches). R2 will contain the number of bytes which were read from the
string, R3 will point to the variable's value and R4 will contain a number
indicating its type.

The table below summarises the possible os variable types:

R4 Type
0 String
1 Signed 32-bit integer
2 Macro

If R4 does not contain three on entry, the value of the variable is returned
either as an integer or as a string. If R4 does contain three then integers are
converted to signed strings and GS_ Trans is called to expand any variable
names in macros. In the latter case, R3 points to the start of the string.

OS_SetVarVal (SWI &24)
Create/ Assign to/Delete an OS Variable
This call allows OS variables to be created, deleted or have their value
altered. Note that not all of the possible types which may be created can be
read with the previous swr.

On entry RO should point to the name of the variable terminated by a space
or control character. RI should point to the value to which the variable
should be set, its format dependent upon the type of the variable. R2 should
contain the length of the value (but see below). R3 should be set to zero on
the first call and will be updated by the swr to deal with wildcards when
assigning or deleting. Finally, R4 should contain the type of the variable
from the table below:

R4 Treatment of value
0 Value is os_GSTransed before assignment
1 Value is taken as an integer
2 Value is taken as a string
3 Value is passed through os_EvaluateExpression
16 Value is a piece of code to execute (see below)

To delete a variable the top bit of R2 should be set for types 0-3 and R2
should contain 16 for type 16.

When the call returns, R3 will be updated and should be preserved for the
next call if wildcards are being employed. R4 returns the type that was

62

OS_CLI Related SWis

created if os_EvaluateExpression was used (since it might be either a
string or integer).

If the 'code' type is used you can supply your own code to deal with read
and write operations. In this case, RI should point to the header of the code
and R2 should contain its length. The code must be preceded by a header
which consists of two branches which call the write routine and the read
routine respectively. The code is called in Supervisor Mode so RI4 should
be preserved on the system stack before any swrs are used.

The write entry point is called with RI pointing to the value to be written
and R2 containing its length. The read entry point is called with no entry
parameters and your code should return a pointer to the value in RO and its
length in R2. A number of errors may be generated by os_SetVarVal
according to various parameter or syntax errors in its use.

Marvin
There follows an extensively annotated example (affectionately known as
'Marvin') which illustrates the use of the swr os_SetVarVal. It uses some
devious code to randomly change the value of Arthur variable Cli$Prompt
- the variable that contains the string printed when Arthur awaits a
command. The program assembles a piece of code called "Marvin" and
*MARVIN will load and execute this code. To see its results type QUIT. And
when you've had enough, press <CTRL-BREAK>!

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

REM >List6/1
REM MarvinSrce
REM by Nicholas van Someren
REM Archimedes OS : A Dabhand Guide
REM (C) Copyright AvS and NvS 1988
DIM code% 1000
FOR pass%=0 TO 3 STEP 3
P%=code%

[OPT pass%
.start
SWI "OS ReadMonotonicTime"
STR RO, seed
ADR RO,varname
ADR Rl,code
MOV R2,#endcode-code
MOV R3,#0
MOV R4,#&10

;Get random number seed
;Save it
;Get variable name's address
; and address of our code
; and length of our code
;Use first match of name
;' Marvin' is of type 'code'
;Create variable 'Marvin' SWI "OS SetVarVal "

ADR RO, cliname
ADR Rl,clistr

;Get 'Cli$Prompt' string address
; and address of value string

MOV R2,#cliend-clistr ; and length of value string

63

Archimedes Operating System

64

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

MOV R3,#0
MOV R4, #2
SWI "OS SetVarVal"
MOV PC,Rl4 ;Return

.code
B writecode
.readcode
LDR Rl,seed
EORS Rl,Rl,Rl,ROR #13
LDR R2,constant
ADDCS Rl, Rl, R2
STR Rl,seed
AND Rl,Rl,#&3C
ADR RO, strings
ADD Rl,Rl,RO
LDR RO, [Rl], #4
LDR R2, [Rl]
SUB R2,R2,RO
ADR Rl,ss
ADD RO,RO,Rl
.writecode
MOV PC,Rl4 ;Return

.seed
EQUD 12345678

.constant
EQUD 555557

.strings
EQUD sO-ss
EQUD sl-ss
EQUD s2-ss
EQUD s3-ss
EQUD s4-ss
EQUD s5-ss
EQUD s6-ss
EQUD s7-ss
EQUD s8-ss
EQUD s9-ss
EQUD sA-ss
EQUD sB-ss
EQUD sC-ss
EQUD sD-ss
EQUD sE-ss
EQUD sF-ss
EQUD slO-ss

Use first match
'Cli$Prompt' is of type 'string"
Create new 'Cli$Prompt'

;The start of 'Marvin' code
;Branch to write code
;Start of read code
;Fetch the random seed
;Shift it and 'EOR' with itself
;Get a constant
;Add it in when carry set by ROR
;Store this back as next seed
;Mask off all but bits 2-5
;Get address of pointer table
;Add in random offset
;Read pointer, post incremented
;Read next pointer
;Store the difference in R2
;Get absolute address of strings
;Form real address of message
;Write code is put here

;Space for a random seed

;A prime constant

;The string offset table

.ss ;The strings themselves

.so
EQUS "That was an amazing command."
.sl

OS_CLI Related SWis

760 EQUS "Four Mips, and you ask me to do that."
770 . s2
780 EQUS "I'm NOT doing that again."
790 .s3
800 EQUS "I've got a pain in all the diodes down my side."
810 . s4
820 EQUS "Brain the size of a planet, and I'm doing this."
830 . s5
840 EQUS "You'll ask me to pick up a piece of paper next."
850 . s6
860 EQUS "I hate humans."
870 . s7
880 EQUS "Why don't you do something mindless instead?"
890 . s8
900 EQUS "Don't hit the keys so hard."
910 .s9
920 EQUS "Shall I put my head in a bucket of water?"
930 . SA
940 EQUS "Is there any point to this?"
950 .SB
960 EQUS "I could blow myself up if you wanted me to."
970 .SC
980 EQUS "Don't talk to me about life."
990 .SD

1000 EQUS "I'm not impressed by your typing."
1010 .SE
1020 EQUS "You're really very stupid, compared to me."
1030 . sF
1040 EQUS "You can't realise how dull this is."
1050 . slO
1060 ALIGN
1070 .endstring;The end of the strings
1080 .endcode ;The end of the code
1090 .varname ;The name of the variable
llOO EQUS "Marvin "
lllO ALIGN
1120 .cliname ;The prompt variable name
1130 EQUS "Cli$Prompt "
ll40 ALIGN
1150 .clistr ;The prompt variable's value
1160 EQUS "<Marvin> M J*"
ll 70 EQUB 0
ll80 .cliend ;End of the prompt variable
ll90] :NEXT
1200
1210 REM Save the code and make it a utility
1220
1230 OSCLI"SAVE Marvin "+STR$-code%+" "+STR$-P%
1240 OSCLI"SETTYPE Marvin FFC"
1250 PRINT"Code assembled and saved as 'Marvin'."
1260 END

Listing 6.1. Marvin.

AOS-E 65

7 · Filing Systems

Introduction
Filing systems are the parts of the Operating System which are responsible
for the storage and retrieval of large amounts of information collectively
known as 'files'. Each different storage medium has its own filing system to
deal with the housekeeping and hardware control neccessary for the
storage device concerned. Because many of the operations that filing
systems perform are the same for all devices, the Operating System divides
the management of files into two sections: a generic part, concerned with
all filing systems, and a specific part which deals with a specific kind of
device. The generic part is known as the 'FileSwitch' and it controls the
interface between the user and a particular filing system. This approach
has many advantages, not least that it keeps the 'user interface' (syntax of
commands) consistent and further, it reduces the amount of software
required to implement a new filing system.

The filing systems which are most intensively used on Archimedes
computers are the Advanced Disc Filing System (ADFS) and the Econet
local area network filing system (NFS) . An introduction to the ADFS is
included in the User Guide which is part of the Archimedes package - if you
are not already familiar with the basic operation of the ADFS then you
should read the chapter on filing systems in the User Guide before reading
the rest of this chapter.

The OS also provides some 'device' filing systems which allow the key­
board, screen and printer to be treated as filing systems in themselves. This
mechanism makes input/ output more consistent across all of the standard
peripherals. We shall examine these peripheral devices in more detail later
in this chapter. While the Arthur OS doesn't support a 'RAM filing system'
RISC OS does and this will be a major time-saver for floppy discs users. No
doubt many third-parties will produce filing systems for their own devices
which will hopefully keep to the standards set by existing Acorn software.

66

Filing Systems

Naming of Filing Systems, Files and Directories
Most filing systems consider data as an arbitrary collection of bytes
referred to by name - this is the definition of a 'file'. Every file has a name,
the 'filename', which uniquely identifies t within the current area of work.
Filing systems do not themselves make a y distinction between the kind of
data stored in a file; it is up to the Op rating System, the user and the
application to determine whether the d ta in a given file is of a suitable
format.

The naming of files must obey certain rul s in order to allow filing systems
to operate in a consistent way. In partic lar, filenames should ideally be
composed exclusively of letters, digits or underline symbols - they should
not contain any punctuation symbols b cause most of these are reserved
for special meanings.

Both the ADFS and NFS support filename of up to ten characters, with no
distinction being made between upper a d lower case letters. You should
be extremely cautious when using fo eign language (or 'top-bit-set')
characters in filenames because the su port for them is very limited in
current software and they will have nasty side-effects if files are
transferred to older systems, particular BBC Micro implementations of
the ADFS.

The punctuation symbols shown below h ve special meanings that prevent
them from being used in filenames - if ou use them by mistake you can
expect error messages to result:

* # @$ &\ /\ %

Directories
Most filing systems provide a means of rouping files together in clumps
known as 'directories'. It is entirely up to he user how directories are used,
but it is common to group related files in the same directory to make them
easier to find. An important restriction s that all the filenames within a
given directory must be unique, otherwis it would be impossible to be sure
which file was being referred to. However, directories may contain other
directories (called 'sub-directories') and so on, leading to a 'hierarchical'
arrangement of nested directories.

The top of a directory hierarchy is known as the 'root' and is represented in
Acorn filing systems by the dollar symbol '$'. Each disc device, whether it is
floppy or hard, has a root whose 'real' directory name is the name of the

67

Archimedes Operating System

disc. Thus the disc name (preceded by a colon ':') can usually be used
interchangeably with the dollar symbol to refer to the root directory.

At any given time one of the directories in the hierarchy will be in use - this
is known as the Currently Selected Directory (CSD) and is represented by
the ampersat symbol '@'. Files within the cso may be referred to by their
name alone; files in other directories must be referred to by a name
sequence which uniquely identifies them and is known as their 'pathname'.
The pathname is formed by stringing together the appropriate sequence of
directory names connected by full stops. Thus, a file called 'Fred' in
directory 'Alex' which is in turn a subdirectory of the root has the full
pathname '$.Alex.Fred'.

The other reserved punctuation symbols noted earlier have special
meanings when used in pathnames; these are:

Joins directory /file names in a pathname, eg:
Alex.Fred

Precedes a disc name (equivalent to$), eg:
:My Disc.Alex

Note that the colon is also used to follow a filing system name; see later.

$
&
@
A

%
\

Represents the root directory of the disc, eg, $.Alex
Represents the User Root Directory (URD)
Represents the Currently Selected Directory (cso)
Represents the 'parent' directory
Represents the Currently Selected Library (CSL)
Represents the Previously Selected Directory (PSD)

The URD and CSL have not been mentioned before, but are discussed later in
this chapter. The meaning of the 'parent' directory is fairly self-evident,
being the directory which contains the directory so far specified in a
pathname. The use of the caret symbol 'Al is intended to convey movement
'up' the hierarchy, with the root imagined as being at the top.

Files on Different Filing Systems
A powerful extension to pathnames allows them to specify that a file is to
be found on a particular filing system; this allows pathname strings to be
composed for any file on any filing system, but without the burden of
needing to change filing systems back and forth manually.

A filing system name is introduced by following it with":". The logic of this
is that the next thing usually specified is a disc name (though this is

68

Filing Systems

optional), so the consistency of the naming system is preserved. For
example:

NET:$.Alex.Fred

refers to the file 'Fred' in the directory 'Alex', which is a sub-directory of
the root of the currently-selected network file server. Similarly:

ADFS::BiqDisc.Proqrams.BASIC.Pretty

refers to the file 'Pretty' which is in the sub-directory 'Programs.BASIC' on
the disc entitled 'BigDisc'. Note that here two colons are required, one to
follow the filing system name and the other to precede the disc name.

For BBC MOS compatibility reasons the old style of enclosing filing system
names in hyphens, eg, -NET-, is still tolerated by the OS but its use should be
avoided wherever possible.

Device Filing Systems
Another very useful aspect of filing system naming is that the keyboard,
display and printer may be treated as filing systems in themselves for the
purpose of byte-oriented operations. It is not sensible to try to load or save
programs to the device filing systems!

Six different device filing systems are currently supported (seven if we
include null:). They are listed below along with a brief note on their
functionality:

Device Name
kbd:
rawkbd:
vdu:

rawvdu:
printer:
null:
Input/Output:

Functions Available
Input only, returned by os_ReadLine
Input only, returned by os_ReadC
Output only, processed by GS_Read then
sent to os_ WriteC
Output only, issued through os_ WriteC
Output only, issued direct to current printer

Input returns End Of File, Output is discarded

The 'raw' forms of the keyboard and VDU devices deal with characters
exactly as they are encountered, whilst the 'cooked' forms apply the
specified pre-processing (mainly to cater for escape sequences using the
vertical bar 'I') before passing the data on. Note that the way to generate
an End Of File condition on the keyboard is to type <CTRL-D> and press
RETURN. In case you are wondering, this mechanism is borrowed from the
Unix Operating System, perhaps a hint of things to come.

69

Archimedes Operating System

Quite aside from the fact that the device filing systems are just plain useful,
their existence preserves the consistency of the the OS device naming syntax
through nearly all the devices available on standard Archimedes computers
(the notable exception being the RS423 port). If you consider the potential
difficulties of signifying the end of file on the Rs423 device it is not hard to
see why the authors of the os chose not to implement it right away.

It may have occurred to you that the ability to treat the VDU and keyboard
as filing systems means that several of the standard Operating System
utilities are really redundant; for instance, *BUILD and *TYPE. However,
compatibility requires them to be provided nevertheless, and this seems to
be the main reason they survive.

Ancillary File Information
Load and Execute Addresses
As well as having a name, every file has two 32-bit fields associated with it
which give the Operating System information about where it should be
loaded in memory and where execution should begin. Not surprisingly,
these are referred to as the 'load address' and 'execute address'. Load and
execute addresses are only really necessary for machine code programs
because the Operating System deals automatically with other kinds of files,
as we shall see shortly.

If you use the *LOAD command to load a file into memory, the load address
associated with the file is used by default. It is possible to override this by
supplying a different load address as part of the *LOAD command, though
this clearly requires the file to be relocatable if it is a piece of machine-code.

The *RUN<filename> command (and its synonyms *<filename> and
*I <filename>) allow machine code programs to be loaded and executed in
one go - in this case the file is loaded at its load address and then executed
starting at its execute address. The execute address must be within the
program or the Operating System will generate an error. (By 'within the
program' we mean it must be greater than or equal to the load address but
less than the load address plus the length.)

If the top twelve bits of the load address are set, ie, if the first three
hexadecimal digits are 'FFF', the file is treated in a special way. Such an
address is outside the addressing range of the ARM so the OS uses this as a
flag for storing file type information, allowing a number of useful
automatic features to be provided.

70

Filing Systems

File Types and Date Stamping
Where a file has a load address with the top twelve bits set, the remaining
bits are used to keep three useful pieces of information: the file's type, and
the date and time 'stamp', initially indicating precisely when it was
created. Clearly it is very useful to have this information because it allows
us to keep track of the 'age' of programs. Furthermore, the file's type
allows us let the os decide how to deal with a file when we issue non­
specific commands such as *<filename>.

The format of the file type, date and time information stored in the load
and execute address fields is as follows:

Load Address FFFtttdd
Execute Address dddddddd

Here, the file type information is represented by the three hexadecimal
digits shown as 'ttt', and the date and time by the ten hexadecimal digits
'dddddddddd'. When a file is created or has its date stamp updated, the
absolute time is stamped onto the file in the form of the number of
centiseconds (hundredths of a second) since 00:00:00 on the 1st January 1900
- this is usually a pretty large number! Whilst such accuracy is not generally
required, it is readily available from the real-time clock and internal
counters in the Archimedes, so it is stamped in full for speed. The command
*STAMP may be used to update the date and time stamp on a given file, and
this is discussed later in this chapter.

The Operating System uses the file type to decide what action to take when
requested to *RUN the file. Since a command of the form *<filename> is a
synonym for *RUN, we can be lazy and type only the name of a file to save
time. It then looks up the file type and decides what to do.

Operating System aliases may be defined for each possible file type - they
allow the two cases of *LOADing and *RUNning the file to be determined
separately. Each file type may' have two such aliases:

Run$Type_ttt for *RUN, *I or *<filename>
Load$Type_ttt for *LOAD

Whenever either of these actions is applied to a file, the Operating System
checks for a defined alias and uses it if possible. For example, the aliases
for files whose type is 'BASIC program' (type &FFB) are:

Load$Type_FFB BASIC -Load %*0
Run$Type_FFB BASIC -Quit %*0

71

Archimedes Operating System

which cause the BASIC interpreter to be entered with the appropriate
options set and the remainder of the command line passed on with %*0.
The file type aliases may be set using the *SET command as is usual for OS
variables, so where we have files for our own software (file type &ABC) we
can establish them with:

*SET Load$Type ABC MyCode %0
*SET Run$Type_ABC MyCode %0

You can use *SHOW to display the current settings for file types. Here is a
list of the file types currently allocated by Acom for osl.2:

Type Meaning
&FFF ASCII text
&FFE EXEC commands
&FFD Data
&FFC Transient program
&FFB BASIC program
&FFA Relocatable module code
&FF9 Sprite definition
&FF8 Application code
&FF7 BBC Micro font definition
&FF6 os font manager font definition
&FEF Desktop diary file
&FEE Desktop notepad file
&FED Palette definition
&FEO Desktop accessory code

The file type range from &000 to &7FF is free for use by user programs, all
other values being reserved by Acom.

Libraries and Search Paths
When a command is given to the Operating System, it first establishes
whether the command is supported by any of the software installed in the
computer's ROM or RAM. If not, the os attempts to find a file of the same
name in the CSD and execute it. Clearly, if all our extensions to the
Operating System had to be provided in one directory, the hierarchical
directory system would be wasted.

In order that we may enter OS commands to run files which are not in the
CSD, we need to be able to indicate where else the OS should search. This is
achieved through the use of 'libraries'. A second directory, known as the
Currently Selected Library (or CSL), may be nominated as the place for
Arthur to search when it encounters an unrecognised command. The CSL is

72

Filing Systems

represented by the percent character '%' in pathnames, and may be set
using the *LIB command, which is followed by the pathname of the chosen
library directory. Thus, one or more directories (though only one at a time)
can be used to keep a 'library' of command files. To allow us to override
this, whenever a directory name is included explicitly in the command then
other searches do not take place.

The Operating System takes this idea a stage further and provides OS
variables which allow multiple search paths to be set up.

Two different classes of search path are available; one for commands,
analogous to the library system described above, and one for other 'read'
functions such as loading or opening files for input.

Two OS variables are provided to establish these search paths:

Run$Path for execute operations
File$Path for read operations

and these may be set using *SET in the usual way. Each may contain a
sequence of directory pathnames, separated by commas and terminated by
a full stop. The default settings for these variables are:

Run$Path ,%.
File$Path

which is to say that commands files for execution are searched for first in
the cso, then in the CSL and that files to be read are only searched for in the
cso. What makes this facility particularly useful is that since pathnames
may contain filing system names, the path strings can specify libraries on
one or several different filing systems. Obviously, the amount of time spent
dealing with the command increases as the number of items in the path
strings do, particularly where multiple filing systems are in use, but
frequently the impact of this is scarcely noticeable to the user.

73

8 · The FileSwitch Module

The FileSwitch is an Operating System module which makes os_CLI '*'
commands and SWis available for general filing system control. By
separating out the filing system functions which are common to all filing
systems, the FileSwitch ensures the consistency of the user interface and
makes the implementation of new filing systems easier by reducing the
number of functions that need to be supported.

All FileSwitch commands are non-filing system specific, and they include
commands for file and directory creation, deletion, cataloguing, examin­
ation, copying and so forth. Most of the FileSwitch OS_CLI commands have
one or more equivalent SWis which are used to call the selected filing
system as appropriate.

FileSwitch Commands
The following few pages cover each of the FileSwitch commands in some
detail- of course, *HELP will provide an online summary. In describing the
syntax of these commands we use the word 'object' to mean either a file or
a directory.

74

The FileSwitch Module

*ACCESS
Syntax:

*ACCESS <object name> [DJ {L} {W} {R} {/} {W} {R}

The *ACCESS command allows the user to control the access attributes of a
file, and allows limited control of directory attributes. It takes an 'object'
name - the name of a file or directory (optionally including wildcards) -
and a string of up to six attribute symbols. These attributes are applied to
the object, replacing those that were previously present. The possible
attributes are:

D Indicates that the object is a directory. This attribute may not be
altered by the *ACCESS command but is included here for
completeness.

L When present this attribute 'locks' an object, preventing it from
being deleted, written to or overwritten except by specifically
overriding the lock. This is primarily to prevent accidental
damage to files, but directories always default to 'locked' so as to
remind you to be cautious. Of course, the locked bit doesn't
prevent the contents of directories being altered; only the deletion
of the directory itself.

W The presence of this attribute allows writing to files. To
successfully OPENOUT or OPENUP a file its access must include a 'W'
and must not include an 'L'. This attribute has no relevance for
directories.

R The presence of this attribute allows reading from files. To
successfully OPENIN or OPENUP a file its access must include an 'R'.
This attribute .has no relevance for directories.

I The oblique character separates the attributes for the two levels of
security on Econet systems, known as 'private access' (before the
oblique) and 'public access' (after it). Familiarity with the Econet is
required to take full advantage of this attribute, which is not
supported by the ADFS.

Example:

*ACCESS MyFile LR

Locks and prevents writing to 'MyFile'.

75

Archimedes Operating System

*APPEND
Syntax:

*APPEND <filename>

The *APPEND command is used to add text entered from the keyboard to
the end of an existing file. It operates in the same way as *BUILD (see
below), but requires that file already exists and then extends it. *APPEND is
terminated by an ESCAPE condition.

Example:

*APPEND ExecFile

Allows text to be added to the end of 'ExecFile'.

*BUILD
Syntax:

*BUILD <filename>

*BUILD creates the named file (or, if it already exists, overwrites it if
attributes permit) and then writes to the file all text entered from the
keyboard. Its most common use is for the creation of *EXEC files (see
below). *BUILD is terminated by an ESCAPE condition (that is usually, but
not necessarily, by pressing the ESCAPE key). The default file type used by
*BUILD is &FFD (Data), which must be changed to &FFE using *SETTYPE (see
later) if the file is to be *EXECed automatically.

Example:

*BUILD ! Boot

Creates and allows text to be entered into !Boot.

76

The FileSwitch Module

*CAT
Syntax:

*CAT {<directory>}

The *CAT command 'catalogues' (lists the contents of) the specified direc­
tory. If no directory pathname is given, the CSD is catalogued.

Examples:

*CAT
*CAT $.Programs

Catalogues the cso and the directory $.Programs.

*CDIR
Syntax:

*CDIR <directory> {<maximum size>}

The *CDIR command creates a new empty directory with the specified
pathname, setting its attributes to the default of 'DL'. The NFS accepts the
optional 'maximum size' parameter and ensures that the directory will be
able to contain the specified number of objects. ADFS takes no notice of this
parameter.

Example:

*CDIR NewDir

Creates a new directory 'NewDir' in the CSD.

*CLOSE
Syntax:

*CLOSE

This command ensures that all file buffers in RAM are written out to the
appropriate files and then closes all open files on the current filing system.

77

Archimedes Operating System

*COPY
Syntax:

*COPY <s ource spec. > <destination spec.> {<options>}

The *COPY command is a general-purpose file duplicating command of
considerable power. It requires at least two parameters: a source specifi­
cation and a destination specification (both of which may contain
wildcards) and then copies all the specified objects from the source to the
destination. Directory names may be used in both source and destination
specifications, but are interpreted differently. When a wildcard is used in a
directory name in the source, only the first match is used; when used in
filenames a wildcard must appear in both source and destination, in which
case the wildcard field is preserved. For example:

*COPY $.Alex . * Net :Alex. Safety.*

will copy all the files in '$.Alex' on the current filing system into the
network directory 'Alex.Safety', preserving the names of the files as it
does so. However, the following:

*COPY *.Nick NewFile

will only copy the file called 'Nick' from the first subdirectory of the CSD to
the file 'New File' .

A range of options may be appended to the *COPY command:

C Confirm. The user is asked to confirm that each file is to be copied.
I

D Delete. Files are deleted after they have been copied.

F Force. Destination files are overwritten if they already exist.

P Prompt. The user is prompted for disc changes when copying
between discs. This is for use with single disc drives.

Q Quick. Allows application memory to be used during copying, thus
speeding up lengthy copies considerably. However, programs in
the application space will be destroyed, and the user will be
returned to the os Supervisor on completion of the command.

R Recurse. Causes sub-directories to be copied as well, saving time
when an entire directory structure needs copying. Note: it is
unwise to recursively copy a directory into one of its sub­
directories as this will result in an infinite loop which will fill up
the disc!

78

The FileSwitch Module

V Verbose. Displays information about each file copied.

The Operating System pseudo-variable Copy$0ptions contains the default
settings of these options. The default actions may be overridden by giving
the desired attribute set after the command. For example:

*COPY This That -RV

Any attribute not specified after the command assumes the state specified
in the default Copy$0ptions variable. Specifying an option causes the
corresponding action to be selected. Specifying an option prefixed by a '-'
causes the option to be de-selected and the corresponding action is not
taken.

In the above example, we specify that a Recursive copy (R) is not to take
place but that we want to force Verbose mode (V) to be selected. The other
options revert to their default settings.

*COUNT
Syntax:

*COUNT <fi le specification> {<options>}

The *COUNT command totals the size of the file(s) that match the
specification (which may contain wildcards) and displays the results
rounded to the nearest lk. It also responds to the 'R' and 'V' options in the
same way as *COPY, allowing multiple directories to be sized and the files
involved to be displayed.

Example:

*COUNT $ R

Finds the total size of all files on a disc.

79

Archimedes Operating System

*CREATE
Syntax:

*CREATE <filename> (<size> (<execute address> (<load address>)))

The *CREATE command reserves space for a file without actually writing
any data into it. The optional size parameter sets the number of bytes
reserved, zero being used by default. The execute and load addresses may
be set, the load address defaulting to zero if not supplied. Where both
addresses are omitted, the file type is set to &FFD (Data).

Example:

*CREATE BigFile 20000

Creates a new file 'BigFile' 128k long.

*DELETE
Syntax:

*DELETE <object name>

The *DELETE command deletes the named object from the catalogue so that
the space it occupies may be re-used. An error message will be generated if
the object does not exist or is locked or, in the case of directories, if the
directory is not empty. Wildcards may be used in all fields of the pathname
except the last and so, to delete several files at once, *WIPE should be used
instead (see below).

Example:

*DELETE Junk

Deletes the file called 'Junk'.

80

The FileSwitch Module

*DIR
Syntax:

*DIR {<directory>}

This command changes the Currently Selected Directory (cso). If no
directory name is supplied the current directory is set to the user root
directory (URD). If the command was processed successfully, the directory
which was the cso when the command was issued becomes the previously
selected directory (PSD) and is accessible with *BACK in the ADFS.

Examples:

*DIR
*DIR $.Fred. Software

Re-selects the URD as the cso and sets the cso as '$.Fred.Software'.

*DUMP
Syntax:

*DUMP <filename> {<offset into file> {<start address>}}

*DUMP opens the specified file and displays its contents in hexadecimal and
ASCII as text lines in the following format:

Address : 00 01 02 03 04 05 06 07 : ASCII data
00008000 : 42 32 43 01 01 OD 9C 4D : B C M

Each line shows the address, hexadecimal value and ASCII value of each
byte, with unprintable ASCII codes represented by full stops. The width of
the displayed lines varies according to the display mode selected: it is 16
bytes wide in 80-column modes.

The address field usually shows how far through the file each byte
appears, starting at the file's load address for code files or at zero for time­
stamped files.

The optional 'offset into file' parameter allows dumping to begin part way
through the file - useful for skipping past the beginning of files.

The optional 'start address' parameter enables you to substitute the load
address of the file for a different address, making the displayed address of
each byte be the start address plus the offset within the file.

AOS--F 81

Archimedes Operating System

*ENUMDIR
Syntax:

*ENUMDIR <directory> <file> (<search pattern>)

The *ENUMDIR command lists the objects found in the specified directory
into the named file as a series of text lines delimited by line feeds (ASCII 10).
It is like a file-orientated version of *CAT. The optional 'search pattern'
may be used to restrict the objects listed out by means of a wildcard search.

Example:

*ENUMDIR & CatFile

Lists the contents of the cso in the file 'Cat File'.

*EX
Syntax:

*EX (<di rect ory>)

The *EX command 'examines' the contents of the specified directory (or the
CSD if none is specified) and displays a line of information about each in the
following format:

Date-stamped files:

Unstamped files:

82

Filename
Attributes
File type
Time
Date
Length
Disc position

Filename
Attributes
Load addr
Execute addr
Length
Disc position

The FileSwitch Module

*EXEC
Syntax:

*EXEC (<filename>}

*EXEC allows you to tell the os to take keyboard input from the named file
instead of the keyboard. The file is opened for input and characters are
read from it until the end of the file is reached, when it is closed auto­
matically and input restored to the keyboard.

The *EXEC function may be terminated early by the inclusion of '*EXEC'
without a filename. Alternatively, including another *EXEC <filename>
command will close the current file, open the new one, and start taking
input from the new file instead.

Example:

*EXEC !Boot

Switches character input to the file "!Boot".

*INFO
Syntax:

*INFO <object name>

The *INFO command behaves in much the same way as the *EX command
but deals with an object name (optionally including wildcards) rather than
a directory name. Thus '*INFO *' is equivalent to '*EX'.

Example:

*INFO SomeFile

Displays detailed information about 'Somefile'.

*LCAT
Syntax:

*LCAT (<subdirectory>}

*LCAT displays a catalogue of the currently selected library, or one of its
subdirectories if a parameter is supplied.

83

Archimedes Operating System

*LEX
Syntax:

*LEX {<subdirectory>}

*LEX displays file information for the currently selected library, or one of
its subdirectories, in the same way as *EX. On its own *LEX is equivalent to
'*EX%'.

*LIB
Syntax:

*LIB {<directory>}

*LIB sets the currently selected library (CSL) to the named directory, so that
it will be searched when a file to be *RUN is not found in the CSD. The CSL is
represented by the symbol '%' and it is necessary to set the OS variable
Run$Path to include '%' so that the library is searched.

*LIST
Syntax:

*LIST <filename>

The *LIST command displays the contents of the specified file in the format
specified by *CONFIGURE DumpFormat. Each line is displayed with a line
number.

84

The FileSwitch Module

*LOAD
Syntax:

*LOAD <filename> (<load address>)

The *LOAD command loads the specified file into memory. If no load
address is provided the file's existing load address is used; otherwise the
file is loaded at the address supplied. If the file is Date stamped, then the
action of load changes. The OS looks for a system variable of the type
Alias$@LoadType_ttt, where 'ttt' is the type of the file being loaded. If the
variable exists then the os 'executes' the string assigned to the variable by
sending it to os_cu.
For example, by default, the variable 'Alias$@LoadType_FFB BASIC - Load
%0' is set up by the os. All BASIC programs are saved in files with are
stamped with the file type FFB. Thus if we *LOAD a BASIC program, the OS
actually performs *BASIC -load <filename>. This automatically starts up
BASIC with the specified BASIC program resident in memory.

Several known file types are aliased in this way so that appropriate action
is taken if a date stamped file of the corresponding type is *LOADed. A
similar scheme is used to deal with attempts to *RUN a date stamped file.

You can ues *SHOW to display the current file type settings.

85

Archimedes Operating System

*OPT
Syntax:

*OPT <option number > {<value>}

The *OPT command is used to set various filing system options for the
current filing system. These are as follows:

*OPT 0 Resets the *OPT options to their defaults

*OPT l,<x> Affects whether *INFO-style file information is displayed
when files are loaded or saved. The value of <x> is
interpreted as follows:

0 No information displayed.
1 The filename is displayed.
2 The filename and its load address,

execution address and length are displayed.
3 Either the above, or file type and date-stamp

information are displayed, according to the
file type.

*OPT 4,<x> Sets the auto-boot option as follows:

0 No auto-boot
1 *LOAD the boot file
2 *RUN the boot file
3 *EXEC the boot file

The boot file is either !Boot (for the ADFS) or !ArmBoot (for the NFS).

*PRINT
Syntax:

*PRINT <filename >

The *FRINT command opens the named file for input and sends the contents
of the file to the VDU drivers. This means that ASCII control codes will have
their VDU effect, rather than being displayed as split-bar ' I ' sequences.

86

The FileSwitch Module

*REMOVE
Syntax:

*REMOVE <object name>

This command operates as for *DELETE except that no error is generated if
the specified object does not exist. Note that wildcards are not permitted -
you should use *WIPE instead.

Example:

*REMOVE NoSuchFile

Appears to delete the file 'NoSuchFile' without error.

*RENAME
Syntax:

*RENAME <current object name> <new object name>

The *RENAME command changes the pathname by which the specified
object is known. It can, therefore, not only change the name of an object,
but also 'move' it within the directory hierarchy. The object must already
exist and its new name must not exist in the target directory.

Examples:

*RENAME Joules Carol

Changes the name of file 'Joules' to 'Carol'.

*RENAME &.Physics.Nicko $.Exams.Power

Moves the file 'Nicko' from the subdirectory 'Physics' of the CSD into
$.Exams and renames it 'Power'.

87

Archimedes Operating System

*RUN
Syntax:

*RUN <filename> {<parameters>}

*RUN both loads and then executes the specified file, using the load and
execute addresses associated with the file. Parameters may optionally be
added which are accessible to the program when it begins execution.

Example:

*RUN 4YourLife

Loads and executes the file '4YourLife'.

*SAVE
Syntax:

*SAVE <filename><start addr><end addr>{<exec addr> {<reload addr>}}

or alternatively:

*SAVE <filename><start addr>+ <length> {<exec addr>{<reload addr>}}

*SA VE copies the specified area of memory to a named file. The memory
area and the file's associated load and execute addresses may be specified
in one of the two forms shown above. In the first case the start address
and the address of the byte after the last byte to be saved are supplied; in
the second case the start address and the length in bytes are supplied.

A reload address may optionally be supplied, causing the file thereafter to
be loaded at a different address from where it is saved.

Where execute and reload addresses are not supplied, defaults of the start
address for saving are assumed.

Example:

*SAVE TheWorld 0 +40000

Saves 256k of memory into file 'The World'.

88

The FileSwitch Module

*SETIYPE
Syntax:

*SETTYPE <filename> <type>

*SEITYPE allows the file type set by the os for the file to be changed. The 12-
bit 'type' is applied to the named file, normally entered as three hexa­
decimal digits.

Example:

*SETTYPE Alphabet ABC

Sets the file type of file 'Alphabet' to &ABC.

*SHUT
Syntax:

*SHUT

This command has the same effect as *CLOSE (ie, it closes all open files) but
it affects all filing systems rather than just the currently selected one.

*SHUTDOWN
Syntax:

*SHUTDOWN

This command has an even broader effect than *SHUT. It performs all the
functions of *SHUT and also logs the user off any network file servers in
use and dismounts any discs, both floppy and hard, so leaving the computer
in a 'disconnected' state. The use of *SHUTDOWN at the end of working
sessions is highly recommended.

89

Archimedes Operating System

*SPOOL
Syntax:

*SPOOL {<filename>}

The *SPOOL command opens the named file (the 'spool file') and sends all
subsequent VDU output to it. In many ways *SPOOL is the inverse operation
of *EXEC. If the file already exists then its contents are overwritten.

*SPOOLON
Syntax:

*SPOOLON {<filename>}

*SPOOLON has the same effect as *SPOOL, except that VDU output is appen­
ded to the file if it exists, rather than overwriting it. If the file does not
already exist, *SPOOLON is exactly equivalent to *SPOOL.

Either *SPOOL or *SPOOLON without a parameter will close the spool file.

*STAMP
Syntax:

*STAMP <filename>

*ST AMP overwrites the old date and time-stamp for the specified file with
the current date and time. The file type is set to &FFD if the file was not
already stamped.

Example:

*STAMP PennyBlack

Stamps the file 'PennyBlack' with the current date and time.

90

The FileSwitch Module

*TYPE
Syntax:

*TYPE <filename>

The *TYPE command has a similar effect to the *LIST command, ie, it
displays the contents of the file in the way defined by the configuration
'DumpFormat', but does not precede each line with a line number.

Example:

*TYPE Pitman

Displays the contents of file 'Pitman' on the screen.

*UP
Syntax:

*UP (<how_far>)

The *UP command moves a specified number of levels 'up' through the
directory hierarchy of the currently selected filing system - equivalent to
*DIR followed by a sequence of caret symbols '"' .

Example:

*UP 2

Performs a *DIR " ."

91

Archimedes Operating System

*WIPE
Syntax:

*WIPE <object spec. > {<options>}

The "WIPE command deletes the specified object(s) with wildcards being
permitted. This allows several files or the contents of directories to be
deleted in one go. A number of options may also be included:

C Confirm. Prompts you for confirmation before each deletion.

F Force. Deletes objects even if they are locked.

R Recurse. Deletes subdirectories and their contents as well.

V Verbose. Displays file information prior to deletion.

Operating System variable Wipe$0ptions contains the default settings for
these options - they may be overridden when issuing *WIPE by specifying
the desired attribute set after the command. Again use a tilde '-' to de­
select a particular feature, eg:

*WIPE my_file -c

No confirmation required.

92

9 · Filing System SWis

In addition to the command line interface the FileSwitch module also
provides a range of swrs which allow the same effects to be achieved
efficiently from within programs. Just as many of the '*' commands bear a
strong resemblance to BBC MOS commands, so the Operating System filing
system swrs resemble BBC MOS calls.

The BBC MOS defines a general interface to filing systems through routines
known as OSFILE, OSFIND, OSARGS, OSGBPB, OSBGET and OSBPUT. These are
provided under the os using swrs with similar names, viz: os_File,
os_Find, os_Args, os_GBPB, OS_BGet and OS_BPut. For most of these
routines the parameters each require are taken in the same order as for the
BBC MOS. The main difference is that under the OS, parameters are passed in
the ARM's registers instead of in a table of bytes in memory as is the case
with the BBC MOS. The general rule for converting software from the BBC
MOS form to work on this OS is to take the parameters in the order they
appear in the BBC MOS table and place them in successive ARM registers.

These swrs are outlined below although only the situations where they
behave significantly differently from their original BBC MOS form are
highlighted.

OS_File (SWI &08): Operate on Entire Files
os_File swr deals with loading, saving and modifying the attributes of
whole files. Register RO contains a 'function code' indicating what action is
to be taken. Other, successive registers contain the required parameters:

RO=&OO Save memory to file
Rl=pointer to filename string
R2=load address of file
R3=execution address of file
R4=start address of data in memory
RS=end address of data in memory

As an example, the program given below will save an entire MODE 12 screen
in a file called SCREEN. Because it is accessing screen memory directly it is

93

Archimedes Operating System

much faster than the corresponding ScreenSave command provided by the
OS. Make sure you have 80k left on your disc to hold the screen! A comple­
mentary load screen program listing is given later in this chapter under the
description of the the os_File swr.

94

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
341
350
360
370
380
390
400
410
420
430
440
450
460

REM >List9/1
REM Example of OS File to save
REM screen memory-
REM (c) Mike Ginns 1988
REM Archimedes OS: A Dabhand Guide
REM Dabs Press

DIM ScreenSave 1024
FOR pass = 0 TO 3 STEP 3
P%= ScreenSave
[
OPT pass

ADR RO,Pblock \ Read Start address of screen
ADD Rl,R0,#8
SWI "OS ReadVduVariables"
LDR R4,Pblock+8 \ Start address for SAVE now in R4

ADD RS,R4, #1024*80

MOV R0,#0
ADR Rl,filename
MOV R2,#0
MOV R3,#0

SW! "OS File"

MOV PC,R14

.filename
EQUS "Screen"
EQUB 0

ALIGN
.Pblock
EQUD 149
EQUD -1

l
NEXT

MODE 12

FOR T%= 0 TO 300
GCOL 0, RND (7)

\ RS (end address) = R4 + 80 Kbytes

\ Select Save OS File option
\ Make Rl point to file name
\ zero re-load address
\ zero execution address

\ Call OS File to perform the SAVE

\ Return to BASIC

\ OS Var. number for start of screen

CIRCLE FILL RND(l280),RND(1024),RND(150)

470 NEXT
480
490 PRINT"Saving screen now"
500 CALL ScreenSave
510 PRINT"Screen saved"

Filing System SWis

Listing 9.1. Save screen using os_File swr.

RO=&Ol Write Catalogue Information
This call makes it possible to change the catalogue information about a
specified file. The new catalogue information is held in the same register as
in the previous command. However, this time RS contains a series of flags
which specify the access type to the file. The format of these attribute flags
is as follows:

bit 0 File has read access for you
bit I File has write access for you
bit 2 Not used
bit 3 File is locked
bit 4 File has read access for others
bit S File has write access for others
bit 6 Not used
bit 7 Not used

The concept of 'you' and 'others' is only relevant in the NFS system. In ADFS
bit 0 and 4 should be the same, as should bits I and S.

R0=&02 Write Load Address Only
Address supplied in R2.

R0=&03 Write Execution Address Only
Address supplied in R3.

R0=&04 Write Attributes Only
Attribute flags in RS as shown above.

RO=&OS Read Catalogue Information
Rl=pointer to filename string

The information is returned in RO-RS:

9S

Archimedes Operating System

RO=object type (O=not found, l=file, 2=directory)
Rl=(the same) pointer to filename string
R2=load address
R3=execution address
R4=length
RS=access attributes (bottom byte)

As an example the following program (listing 9.2.) will prompt for a file­
name, read its catalogue details and then display them.

10 REM >List9/2
20 REM Example of OS File to get
30 REM file information.
40 REM (C) Mike Ginns 1988
50 REM Archimedes OS: A Dabhand Guide
60 REM Dabs Press
70
72 REPEAT
80 INPUT filename$
90 SYS "OS File",5,filename$ TO type,, load, execution, length,

attributes -
100
llO IF type =O THEN PRINT " Could not find the specified object"
120 IF type =2 THEN PRINT " Object is a Directory"
130 IF type =l THEN
140 PRINT " Object is a File"
150 PRINT " Load addres s is : "-load
160 PRINT " Execution address is : " - execution
170 PRINT " Length of file is "length
180 IF attributes AND 1 PRINT " File has r·ead a c cess"
190 IF attributes AND 2 PRINT " File h a s write a ccess "
200 IF attributes AND 8 PRINT " File is locked"
210 ENDIF
2 20
230 UNTILO

Listing 9.2. Use of os_File to read catalogue information.

R0=&06 Delete an Object
Returns catalogue information as above, after deleting the specified object.

R0=&07 Create an Empty File
As for RO=O, but the start and end addresses in R4, RS are used only to
determine the size - no data is written.

96

Filing System SWis

R0=&08 Create a Directory
This new call has the same effect as *CDIR: it takes a zero-terminated name
string pointed to by Rl and the minimum number of entries the directory
should contain in R4 (zero will provide the default).

Note the minimum number of directory entries is not relevent to ADFS and
is ignored. It is, however, of use with the NFS system.

Rl=pointer to directory name string
R4=minimum number of entries (zero for default number)

As an example the following code fragment will create a sub-directory
called "Richy" in the root directory($).

ADR Rl,filename
MOV R4,#0
MOV R0,#8
SW! "OS File"

.filename
EQUS "$.Richy"
EQUB 0

R0=&09 Write Date/Time Stamp
This call acts exactly the same as *STAMP; it takes a filename string and
applies the current date/time to it. The file has a file type of &FFD after the
call has been used.

Rl=pointer to filename string

RO=&OA Save Memory to Date/Time
Stamped File
This is just the same as the RO=O case, but since the load and execute
addresses are not required, only the file type is needed (in R2).

Rl=pointer to filename string
R2=file type (bottom 12 bits)
R4=start address of data in memory
RS=end address of data in memory

RO=&OB Create a Date/Time Stamped File
This is the same as the R0=7 case, but again the parameter in R2 is the file
type since the load and execute addresses are not required.

AOS-G 97

Archimedes Operating System

RO=&OC Load File with Path String
Files are usually searched for using the path sequence set by the Operating
System variable File$Path. This call allows File$Path to be overridden by
providing a path string pointed to by R4. The other parameters are as for
RO=&FF (see below).

Rl-R3 As for RO=&FF
R4=pointer to path string

RO=&OD Read Catalogue Information with
Path String
This is the catalogue form of the above, so it is equivalent to RO=S except
that R4 holds a pointer to the chosen path string which overrides
File$Path. The results are returned just as for RO=S.

Rl=pointer to filename string
R4=pointer to path string

RO=&OE Load File with Path Variable
This is the same as RO=&OC except that it requires the path string to be
held in an OS variable, so R4 points to this variable instead of an imme­
diate string. Rl-R3 are as for RO=&FF (see below).

RO=&OF Read Catalogue Information with
Path Variable
This is the same as RO=&OD except that the path string must be in an os
variable pointed to by R4.

RO=&lO Load File Using No Path
The minimal version: the filename is taken as supplied, with no path being
used to prefix it. Otherwise, this is the same as RO=&OC, and its para­
meters are as for RO=&FF (see below).

RO=&ll Read Catalogue Information Using
No Path
The same as RO=&OD except that no path string prefixes the filename.

98

Filing System SWis

R0=&12 Set File Type Only
In much the same way as for R0=2 to 4, this call allows just the file type to
be set.

Rl=pointer to filename
R2=file type (bottom 12 bits)

RO=&FF Load File Into Memory
This call is the general purpose file loading SWI. It reads a file's catalogue
information and then loads it at one of two addresses: either the one
supplied by the file's information, or an overriding address in R2. Which of
the two addresses is used is determined by the bottom byte of R3: if zero,
the override in R2 is used, otherwise the file's own load address is used.

Rl=pointer to filename string
R2=load address (if R3 lsb=O)
R3=file/ override flag (see above)

On return the registers are filled as for RO=&OS, eg:

RO=l (object type is file)
Rl=(the same) pointer to filename string
R2=load address
R3=execute address
R4=length
RS=access attributes

The program listed below (listing 9.3) will load a data file directly back into
a screen memory. When RUN, it tries to reload the MODE 15 screen saved by
the program given in os_File (RO= O), ie, listing 9.1.

Try using the OS ScreenLoad and ScreenSave commands to perform the
same operation and notice the speed difference!

10 REM >List9/3
20 REM Example of OS File to load
30 REM screen memory-
40 REM (c) Mike Ginns 1988
50 REM Archimedes OS: A Dabhand Guide
60 REM Dabs Press
70
80 DIM ScreenLoad 1024
90 FOR pass = 0 TO 3 STEP 3

100 P%= ScreenLoad
110 [
120 OPT pass
130

99

Archimedes Operating System

140
150
160
170
190
200
210
220
230
240
250
260
270
280
290
300
301
310
320
330
340
350
360
370
380
390
400
410

ADR RO,Pblock \ Get address of start of screen
ADD Rl,R0,#8
SWI "OS ReadVduVariables"
LDR R2,Pblock+8 \ Load address for file now in R2

MOV RO,#&FF
ADR Rl,filename
MOV R3, #0
SWI "OS File"

MOV PC,R14

.filename
EQUS "Screen"
EQUB 0

ALIGN
.Pblock
EQUD 149
EQUD -1

l
NEXT

MODE 12

\ Select OS File LOAD option
\ File name-to load
\ Over-ride files own load address
\ Call OS_File to perform LOAD

\ Back to BASIC

\ OS var. number for start of screen

PRINT TAB (10, 10) "Loading screen now"
CALL ScreenLoad

Listing 9.3. Load a block of screen memory.

OS_Find (SWI &OD) Open/Close File for
Byte Access
os_Find SWI (and its related BBC MOS routine OSFIND) allow the
programmer to inform the filing system that a file needs to be made
available for byte or block access. This is known as 'opening' a file. The
converse 'closing' operation must be performed when the file operation is
completed. Opening a file causes the filing system to translate a filename
string into an integer 'handle' - a number representing the file which is
used extensively by other file operations. To close a file, this handle must be
supplied to uniquely identify the file. os_Find's only purposes are the
opening and closing of files.

Currently, the file manager allows 24 files to be open at any one time. A
given file can be opened for read access up to 24 different times, allowing
multiple read access to the same file. However, a file can only be opened
once for write access. If a file has been opened for write access then it

100

Filing System SWis

cannot be opened for read access. Similarly if a file is already open for read
access then it cannot be opened for write access.

In general for os_Find, RO again defines the type of action and Rl ·points to
the filename or contains the handle (depending on the operation). R2
points to a path string, where the option to use it is chosen.

RO=&OO Close a File
Rl=O All open files on the current filing system are closed
Rl>O Rl is taken as a handle of a file which is updated

from buffers in RAM and then closed

R0=&4x Open File for Input
Rl is a pointer to the filename, and the resultant handle is placed in RO on
exit. The file must already exist, otherwise a handle of zero is returned.

RO=&Bx Create and Open File For Output
Again, Rl is a pointer to the filename and the handle is returned in RO. If
the named file exists, it is opened for output and the file pointer and length
are reset to zero. If the file doesn't exist, it is created and opened.

RO=&Cx Open File for Input/Output
ThiS is the same as R0=&4x except that it allows output to the file as well
as input. A handle of zero is returned if the file does not already exist.

See the discussion of paths below.

File Path Considerations in OS_Find
Because of the OS's new features with respect to file paths, a modification
to these functions to cater for paths is provided. Where a path prefix is
desired, a pointer to it is placed in R2 and the appropriate value from the
table below added to the base RO function number (see above):

Value Meaning
0 Use File$Path to prefix the specified filename
1 Use the string pointed to by R2 as a path
2 Use OS string variable pointed to by R2

as a path
3 Use no path at all

101

Archimedes Operating System

Error Handling Extension
Two kinds of error handling extension have been added. The first allows
an error to be raised if an attempt is made to open a directory, the norm
being to permit it but disallow any operations on that handle.

The second allows an error to be raised if the specified file does not already
exist, the norm being simply to return a handle of zero.

Where a path prefix or error handling extension is desired, values from the
table below should be added to the base RO function number (see above) as
appropriate:

Value
4
8

Meaning
Cause an error if a directory is opened
Cause an error if the file doesn't already exist

OS_GBPB (SWI &OC) Get/Put Multiple Bytes
from/to an Opened File
This SWI is the same as its BBC MOS counterpart OSGBPB, but with a number
of extensions.

The first four calls provide for reading from or writing to an open file using
either the file's current pointer or a new pointer which is supplied. The
general form is:

RO=function code
Rl=file handle
R2=memory address (for reading from or writing to)
R3=number of bytes to be transferred
R4=new pointer (where relevant)

Both R2 and R4 are updated during the call to reflect the final memory
address and pointer value. For read operations, R3 returns the number of
bytes not transferred (usually zero) and sets the Carry flag C if any bytes
were not transferred.

RO=&Ol Write Bytes to File at New
Pointer Position
Requires valid R4.

102

Filing System SWis

R0=&02 Write Bytes to File at Current
Pointer Position
R4 is ignored.

R0=&03 Read Bytes from File at New
Pointer Position
Requires valid R4.

R0=&04 Read Bytes from File at Current
Pointer Position
R4 is ignored.

The remaining os_GBPB function codes perform miscellaneous filing system
functions. Most are the same as their BBC MOS counterparts.

R0=&05 Read Title and *OPT 4 Boot Setting
This call should be made with R2 pointing to a block of memory where the
results are returned as follows:

The length of the name string
The name string itself
The boot option (one byte)

R0=&06 Read CSD Name and Privilege Byte
R2 should point to a block of memory on entry. The information is returned
at this point in the following format:

A zero byte
The length of the CSD name
The CSD name itself
The privilege byte

The privilege byte is used by Econet to indicate a status of 'owner'
(byte=&OO) or 'public' (byte=&FF). For ADFS, this byte is always zero.

R0=&07 Read CSL Name and Privilege Byte
This call is the same as R0=6 but returns details of the currently selected
library.

103

Archimedes Operating System

R0=&08 Read Entries from CSD
This call returns a block of directory information comprising the names of
successive objects in the CSD. Data is returned in memory at the address
supplied in R2. The number of entries to be read is supplied in R3, and R4
should contain the first object number. If R4 contains zero, the first name to
be returned will be the first alphabetically. The resulting data in memory is
of the form:

Length of name
Name (null-terminated)

... repeated for the number of objects specified

If not all the names could be supplied, the Carry flag is set and R3 is left
containing the number of those that are outstanding. Otherwise R3
contains zero and the Carry flag is clear.

R0=&09 Read Entries from Specified Directory
This call is an extended form of the previous one. As well as the parameters
shown above, it also allows the directory you wish to read (by supplying a
pathname pointed to by RI) to be specified. The size of the memory buffer is
held in RS (so that it doesn't overflow) and a wildcard string is pointed to
by R6 (to select which entries are to be returned). Clearly this is a lot more
versatile than the R0=&08 form.

Names that match the wildcard are returned in the buffer as a series of null­
terminated strings, their number being returned in R3. R4 is updated to
allow more entries to be read. If there are no more enteries it contains -1.

RO=&OA Read Entries and Information from
Specified Directory
This call effectively performs the swr version of *EX. Its parameters are the
same as above, but it returns a block of information for each entry rather
than just the name. This block is word aligned and formatted as follows:

Offset Information
&00 Load address
&04 Execute address
&08 Length
&OC Access attributes
& I 0 Object type
&14 Object name (null-terminated)

104

Filing System SWis

Listing 9.4 at the end of this section illustrates how this os_GBPB call is
used. The command:

SYS "OS_GBPB",10,dir$,data%,l,next%,63,"*" TO ,,,number%,next

is used to extract the details of the next directory entry. The entry
parameters (from left to right) are:

OS_GBPB code
directory name
place to put file information
number of files to examine
first entry to examine
size of data block (data%)
wildcard string

the last item is that which filenames are matched against. In this case "*"
is used as the wildcard string, so all files will match. After the call, the
variable number% contains 0 if no more entries could be found or 1 if a
valid entry existed. The variable next% is updated so that it points to the
next group of entries (in this case, just the next entry).

The procedure PROCexaminedir is recursive, so that details of subdir­
ectories are also displayed. This recursion is implemented by the command:

PROCexaminedir(dir$+"."+FNgetname(data%+&14),level%+1)

In other words, the procedure calls itself with the name of one of its
subdirectories. The call os_FSControl is used to convert the 'type' of a file
into a string describing the type.

OS_BGet (SWI &OA)
Get Byte at Pointer from File
OS_BGet swr is exactly the same as the BBC MOS call OSBGET - reading the
next sequential byte from an open file whose handle is specified and then
incrementing the file pointer by one. On entry, Rl should contain the file
handle and on return, RO will contain the byte read. The Carry flag 'C' is
clear if the byte was read correctly and set if a problem arose (most likely
through an end-of-file condition or an invalid handle).

As an example of os_BGet the following program (listing 9.4) reads every
byte in a file and counts the number of spaces. This gives, albeit
approximately, indication of the number of words in the file (assuming
each is separated by only one space!).

105

Archimedes Operating System

REM >List9/4 10
20
30
40
so
60
70
80
90

REM Example of OS BGet to count
REM spaces/words Tn a file
REM (c) Mike Ginns 1988
REM Archimedes OS: A Dabhand Guide
REM Dabs Press

DIM WordCount 1024
100
110
120

FOR pass = 0 TO 3 STEP 3
P%= WordCount
[

130 OPT pass
140
150
160

\ On entry RO points to name of file

170 MOV Rl0,#0
180
190 MOV
200 MOV
210 MOV
220 SWI
230

Rl,RO
R0,#64
R2,#0
"OS Find"

240
250
260
270
280
290
300
310
320
330
340
350
360
370

MOV R8,RO
.count loop
MOV Rl-;-R8
SWI "OS BGet"
BCS quit loop
CMP RO, #32
ADDEQ RlO, RlO, #1
B count_loop

.quit loop
MOV Rl,R8
MOV R0,#0
SWI "OS Find"

3 8 0 MOV RO I Rl 0
390
400 MOVS PC,R14
410
420 l
430 NEXT
440
450 MODE 0
460 DIM filename 16

\ total of number of spaces

\ Points to file name
\ Open for read access only

\ Returns file handle in RO

\ Get byte from file
\ If EOF quit loop
\ Is it a space ?
\ If so, increment the count
\ If not end of file then loop

\ Close file

\ Make word count available to USR

470 INPUT "Please enter the filen a me to be investigated
$filename

480
490 PRINT "Counting words now"
500 A% = filename

106

Filing System SWis

510 words = USR(WordCount
520
530 PRINT "Number of words counted is : " words

Listing 9.4. Using os_Bget to count spaces and words.

OS_BPut (SWI &OB) Put Byte at Pointer to File
This call performs the reverse of os_BGet and is equivalent to the BBC MOS
call OSBPUT. It writes the byte passed in RO to the file whose handle is
supplied in Rl at the current file pointer, and then increments the file
pointer by one to allow further OS_BPut calls to work correctly.

OS_Args (SWI &09)
Read/Write Open File Information
This is another of the general-purpose swrs and has an equivalent under
the BBC MOS, although the meanings of most of the operations differ and,
therefore, are all documented here.

The general format of the call is that on entry, RO contains a function code,
Rl contains a file handle and R2 contains data to be written (for write
operations). Usually all registers are preserved, except where information
is being read, in which case it is returned in R2.

RO=&OO Read Sequential File Pointer/Filing
System Number
To make life difficult this function code has two meanings, making it a
special case. When entered with Rl=O (instead of a valid file handle) it
returns the number of the current filing system in RO (using the BBC MOS
numbering strategy).

If Rl holds a valid file handle (ie, a non-zero value) this call returns the
current value of the sequential pointer of that file in R2.

RO=&Ol Write Sequential File Pointer
The reverse of the above call, it allows the sequential file pointer to be
written (set). It should be entered with a valid file handle in Rl and the new
file pointer value in R2. If the new pointer value is beyond the current
extent of the file then its size is increased accordingly and the new area
filled with zeros.

107

Archimedes Operating System

R0=&02 Read File Extent
This call allows the current file extent (length) to be read into R2 for the file
whose handle is supplied in Rl.

R0=&03 Write File Extent
This call allows the extent of the file whose handle is supplied in RI to be
set to the value in R2. If this value is larger than the existing extent, the file
is extended accordingly and the new area filled with zeros.

R0=&04 Read Allocated Size
This call allows the amount of space actually allocated to the file to be read
- enabling you to determine how much space is left before new space need
be allocated. It returns in R2 the allocated space for the file whose handle is
supplied in Rl.

RO=&OS Read End-of-file Status
This is one of two ways of sensing the end-of-file condition (the alternative
being os_Byte call &7F provided for BBC MOS compatibility). When supplied
with a file handle in RI, this call returns a non-zero result in R2 if the file
pointer is equal to the file's extent, otherwise it returns zero.

R0=&06 Write Allocated Size
This is the reverse of the call with R0=4 (above) - allowing you to advise
the Operating System that at least the amount of space in R2 should be
reserved for the file whose handle is supplied in Rl. On return, R2 contains
the amount of space actually allocated.

RO=&FF 'Ensure' File Buffers
This call, carried over from the BBC MOS, is equivalent to part of the
'closing' process for files (under os_Find). It ensures that all filing system
buffers are written out to their corresponding files, thus allowing them to
be closed. On entry, RI must contain either zero (in which case all files are
'ensured') or a valid file handle (in which case just the chosen file's buffers
are 'ensured').

108

Filing System SWis

OS_FSControl (SWI &29)
General Filing System Control
This call provides a wide range of different actions to be performed on the
selected filing system, including setting the CSD or CSL, *RUNning a file,
*CATaloging a directory and so on. The most useful of these routines are
described in the following section.

On entry to OS_FSControl, register RO contains a number which specifies
which of the many operations is to be carried out. The contents of other
registers depend on the action being performed and are described
individually in the following sections.

RO=&OO Set Current Directory
This call is used to change the currently selected directory (CSD) for the file
system. It is equivalent in effect to the Operating System command *DIR
<dimame>. On entry to the routine, RI must point to a zero-terminated
string which contains the name of the directory to be selected. If the
directory name is null, then the current directory reverts to the root
directory as default.

RO=&Ol Set Library Directory
This call is similar to the above, but is used to change the currently selected
library directory (CSL). It is equivalent in function to the Operating System
command *LIB <dirname>. On entry to the routine, RI must point to a
terminated string which contains the name of the directory to be selected as
the library. If the directory name is null, then the library directory reverts to
a default, typically $.Library for ADFS (if this is present).

R0=&02 Reserved for Operating System
Do not use.

R0=&03 Reserved for Operating System
Do not use.

R0=&04 RUN file
This routine will *RUN the named file. The name of the file to be loaded and
executed must be contained in a terminated string which is pointed to by

109

Archimedes Operating System

register Rl. The file is searched for in the directories specified in the system
variable Run$Path. By default, this is set up to be the current and then the
library directory.

If the file being *RUN is date stamped then a suitable RUN alias is looked for
which corresponds to the file type. See the section on *LOAD for a descrip­
tion of the action taken.

R0=&05 Catalogue a Directory
This routine performs an equivalent function to the command *CAT
«dirname>. The name of the directory to be catalogued is contained in a
terminated string which is pointed to by register Rl. If this name is null,
then the currently selected directory is catalogued. For example:

SYS " OS_FSControl", 5, ""

R0=&06 Examine Current Directory
This call prints out full catalogue information on each file in the specified
directory. It is therefore equivalent to the command *EX <dirname>. The
name of the directory to be examined is contained in the null terminated
string pointed to by register Rl.

R0=&07 Catalogue Library Directory
This performs a similar function to the call with RO=&OS except that it
displays a catalogue on the currently selected library directory like *LEX.
Again Rl points to a terminated directory name. If this is null then the
current library directory itself is catalogued. Otherwise the name is taken
to be that of a sub-directory within the library directory which is cata­
logued instead.

R0=&08 Examine Library Directory
This call is similar to that with R0=&06 except that information on files in
the current library directory is displayed. If Rl points to a null string, then
the files in the library directory itself are examined. Otherwise it is
assumed to point to the name of a sub-directory within the library. The
catalogue details of the files in this sub-directory will then be printed
instead.

110

Filing System SWis

R0=&09 Examine Specified Objects
This call allows a, possibly ambiguous, file name and path to be specified. It
then prints out information on any file which matches this specification. On
entry Rl points to the file name/path to be used. For example, if Rl pointed
to the string "A*", then information would be printed on all files beginning
with an 'A' in the current directory. Similarly "$.Richy.A*" would examine
every file beginning with an "A" in the sub-directory "Richy".

RO=&OA Set File System Options
This call is equivalent to the command *OPT n,m where 'n' is the option
number to be set and 'm' is the value. On entry, Rl contains the option
number (n) and R2 the parameter value (m). For example, if Rl contained
four and R2 contained three, then the call would perform *OPT 4,3 and
select a *EXEC boot option. If Rl=O then the settings of all of the file system
options are reset to their default state. For example:

MOV RO,#&OA \ Set * OPT 4,3
MOV Rl,#4
MOV R2, #3
SW! "OS FSControl"

RO=&OB Set File System from Named Prefix
This call sets the currently selected file system to be that specified in the
string pointed to by Rl. If this string does not contain a valid file system
name then no action is taken. As an example, consider the following
program:

MOV RO,#&OB
ADR Rl,string
SW! "OS FSControl"

.string
EQUS "ADFS:fred"
EQUB 0

The file manager will recognise the file system name within the string and
select the ADFS system.

On exit from the routine the following registers return information.

Rl Points to immediately after the file system's name if one was
present in the string.

RZ Equals -1 if no file system name specification was found.

111

Archimedes Operating System

R3 Points to a special field if one was present.

Note that 'name:' is the preferred way of specifying a file system name
within a command. However, the older alternative '-name-' can be used
instead.

RO=&OC Add File System
Add a new file system to those recognised by the file manager. This call is
only of interest to readers considering writing a completely new file
system.

RO=&OD Lookup File System
This call returns information about a file system. On entry Rl identifies the
file system to be investigated. R2 specifies how the file system name is
terminated. On exit : Rl = file system name and R2 points to the file system
control block. This call is only of interest to readers considering writing a
completely new file system.

RO=&OE Select File System
This call selects a specified file system to be the current one. This call is only
of interest to readers considering writing a completely new file system.

RO=&OF Boot File System
This call requests the currently selected file system to perform the boot
operation. This is done when SHIFT-BREAK is pressed. The exact nature of
the boot operation depends on the file system but usually involves auto­
running a file.

RO=&lO File System Removal
Removes the specified file system from those recognised by the File
manager. This call is only of interest to readers considering writing a
completely new file system.

RO=&ll Add Secondary File System Module
Add a secondary module to the main file system module. This call is only of
interest to readers considering writing a completely new file system.

112

Filing System SWis

R0=&12 Translate File Type Number to Name
This call allows a file type number to be converted into the corresponding
file type name. On entry R2 contains the file type number. On exit, registers
R2 and R3 contain eight bytes which are the ASCII representation of the file
type name. As an example, if R2 = &FFB, then R2, R3 would contain the
following bytes on exit:

&49534142 20202043

These bytes are the ASCII representation for the characters "BASIC " - the
name of the file type.

The program below prompts for a file type number and attempts to convert
it to a file type name. The name is then printed out.

10 REM >List9/5
20 REM Example of OS FSControl to
30 REM convert a file type number
40 REM (c) Mike Ginns 1988
50 REM Archimedes OS: A Dabhand Guide
60 REM Dabs Press
70
80 DIM work 8

110 REPEAT
120 PRINT'
130 INPUT "Please Enter File type number &" type$
140 PRINT
150
160 type=EVAL ("&"+type$)
170 SYS "OS_FSControl",&12,,type TO ,,bytel,byte2
180
190 !work=bytel
200 work?4=13
210 PRINT $work;
220
230 !work=byte2
240 work?4 = 13
250 PRINT $work
260 UNTIL FALSE

Listing 9.5. Use of OS_Fscontrol to convert a file type number.

R0=&13 Restore Current File System
This call takes no entry parameters. It selects the current temporary file
system to be the currently selected one.

AOS-H 113

Archimedes Operating System

R0=&14 Reserved for the Operating System
Do not use this call.

R0=&15 Return File System Handle
When dealing with files we usually identify them using a file handle
provided by the file manager. This call translates this file manager's file
handle into the corresponding one actually used by the selected file system.
On entry Rl=file manager's file handle. On exit Rl = the corresponding
handle as used by the file system.

R0=&16 Shut
This call provides an equivalent function to the *SHUT command. It closes
all files on the file system.

R0=&17 ShutDown
This call provides an equivalent function to the *SHUTDOWN command. It
closes all files on the file system. In addition it logs off all file servers and
dismounts any ADFS discs.

R0=&18 Set File Attributes from String
This call provides an equivalent function to the *ACCESS command. It
allows the attributes for any named files to be set. On entry, Rl points to a
string specifying the files to be affected. This may include a wild card to
affect several files . R2 points to a string which contains the new attributes
to be set.

R0=&19 Rename Objects
The call performs a *RENAME . On entry RI points to the first file/path
name and R2 points to the second. The call then renames the first specified
file as the second file specification.

RO=&lA Copy Object
The call provides a general file copy facility. On entry the following
registers contain information:

RI Pointer to first file/path name
R2 Pointer to second file/path name

114

Filing System SWis

R3 Action mask
R4 Optional start date
R6 Optional start date
R7 Optional end date
RB Optional end date

The call is the equivalent of *COPY. All files matching the first file/path
specification are copied to the second file/path specification. Various
options for the copy can be specified in the flags contained in R3. The flags
are as follows:

Bit Function
B Set to select printing of information during copy
7 Set if the original file is to be deleted after the copy
6 Set if user is to be prompted to change disc as required
5 Set if copy is allowed to use application space to speed up copy
4 Set to select verbose mode during copy
3 Set if user is to be prompted to confirm each copy
2 If set, only files between the given time/ date stamps are

to be copied
1 If set, locked files are unlocked and overwritten by the copy
0 Set to allow recursive copying of file through sub-directories

RO=&lB Wipe Objects
This routine provides an equivalent operation to the *WIPE command. On
entry the registers must be set up as follows:

Rl Pointer to file/path name to delete
R3 Action mask
R4 Optional start date
R6 Optional start date
R7 Optional end date
RB Optional end date

The option flags in R3 are the same as those used in the COPY routine.

RO=&lC Count Objects
This routine provides an equivalent operation to the *COUNT command.
On entry the registers must be set up as follows:

Rl Pointer to file/path name to count
R3 Action mask
R4 Optional start date

115

Archimedes Operating System

R6 Optional start date
R7 Optional end date
RB Optional end date

The option flags in R3 are the same as those used in the COPY routine. On
exit from the routine R2 contains the total number of bytes counted in all
matching files. R3 contains the number of matching files counted.

To illustrate the many and varied filing system calls, listing 9.6 is included
at the end of this section. The operation of the program is self-explanatory
and demonstrates how to use the most common forms of the more useful
filing system SWis.

10
20
30
40
50
60
70
80

REM >List9/6
REM TypeTree
REM by Nicholas van Someren
REM Archimedes OS: A Dabhand Guide
REM (c) Copyright AvS and NvS 1988
REM Set aside some workspace and terminate
REM file type string with a Return.

the

90 DIM data% 63,typebuf% 10
100 typebuf%?8=13
110
120 REM Input directory name, using CSD by default,
130 REM and examine it.
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

INPUT"Which Directory
IF dir$="" dir$="@"
PROCexaminedir(dir$,0)
END

? "dir$

REM Examine the directory dir$. The depth of the
REM examination is level%. next% is the next
REM catalogue entry to be read and number% is the
REM number of entries that were actually read.

DEF PROCexaminedir(dir$,level%)
LOCAL next%,number%
next%=0

REM While there is another entry to read, read its
REM name and catalogue information and store it at
REM data%. If another was found (number%>0) then
REM print its name and determine its type.

340 WHILE next%<>-1
350 SYS "OS GBPB",10,dir$,data%,1,next%,63,"*" TO

,,,number%,next%
360 IF number%>0 THEN
370 PRINTTAB(10);":"TAB(level%*3+12);FNgetname(data%+&14);

116

Filing System SWis

380 VDU 13
390
400 REM If the entry was a directory examine it.
410
420
430
440
450
460
470
480
490

IF data%?&10=2 THEN
PRINT"Directory"
PROCexaminedir(dir$+"."+FNgetname(data%+&14),level%+1)

REM If it was a file, and the top 12 bits of the
REM load address are &FFF, find the file type.
REM Otherwise, print it as 'code'.

500 ELSE
510 IF (!data%>>> 20)=&FFF THEN
520 SYS "OS FSControl", 18,, (!data% >>> 8)AND &FFF TO

,, !typebuf%,typebuf%
530 PRINT$typebuf%
540 ELSE
550 PRINT"Code"
560 ENDIF
570 ENDIF
580 ENDIF
590 ENDWHILE
600 ENDPROC
610
620 REM Extract the file name stored at addr%.
630
640
650
660
670
680
690
700

DEF FNgetname(addr%)
LOCAL b$
WHILE ?addr%>31
b$+=CHR$(?addr%)
addr%+=1
ENDWHILE
=b$

Listing 9.6. Display directory tree.

10 REM >List9/7
20 REM FileTest
30 REM by Nicholas van Someren
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Copyright AvS and NvS 1988
60
70 DIM text% 1000
80 endtext%=text%
90 PRINT "Please enter some lines of text, pressing Return"

100 PRINT "after each. Press Return by itself to end."
110 INPUT LINE a$
120 WHILE (endtext%+LEN (a$) <text%+1000) AND a$<>'"'
130 $endtext%=a$
140 endtext%+=LEN(a$)+1
150 INPUT LINE a$

117

Archimedes Operating System

160 ENDWHILE
170 PRINT"Thank you - saving text .•. "
180 SYS "OS File",0,"TextFile",0,0,text%,endtext%
190 *INFO TextFile
200 PRINT"Change all the file information:"
210 SYS "OS File",l,"TextFile",&FFFFFE12,&3456789A,,8
220 *INFO TextFile
230 PRINT"Change the load address:"
240 SYS "OS File",2,"TextFile",0
250 *INFO TextFile
260 PRINT"Change the execution address:"
270 SYS "OS File",3,"TextFile",,&87654321
280 *INFO TextFile
290 PRINT"Change the attributes:"
300 SYS "OS File",4,"TextFile",,,,3
310 *INFO TextFile
320 PRINT"Open the file - ";
330 SYS "OS Find",192,"TextFile" TO filehandle%
340 PRINT"the file handle is "; filehandle%
350 PRINT"Read in a byte - ";
360 SYS "OS BGet",,filehandle% TO gotbyte%
370 PRINT"the byte was ";gotbyte%
380 PRINT"Read the extent of the file - ";
390 SYS "OS Args",2,filehandle% TO ,,fileextent%
400 PRINT"the extent is ";fileextent%
410 PRINT"Set the pointer to the end of the file:"
420 SYS "OS Args",l,filehandle%,fileextent%
430 PRINT"Write back the byte we read on to the end:"
440 SYS "OS BPut",gotbyte%,filehandle%
450 PRINT"Read the middle third of the file:"
460 SYS "OS GBPB",3,filehandle%,text%,fileextent% DIV

3,fileextent%-DIV TO,,endtext%
470 PRINT"Save the middle third back onto the end:"
480 SYS "OS GBPB",l,filehandle%,text%,endtext%-

text%,fileextent%+1
490 PRINT"Force the file to be updated with:"
500 SYS "OS Args",&FF,filehandle%
510 PRINT"Close the file and examine the result:"
520 SYS "OS Find",0,filehandle%
530 *TYPE TextFile

Listing 9.7. Manipulating file attributes.

118

10 ·Modules

The most fundamental way in which the Operating System can be
expanded is by the use of 'Relocatable Modules' - pieces of software which
add applications or services to the computer in a well-defined and
structured way. The BBC MOS allowed users to install 'Sideways ROMs' in
order to add to the computer - the module concept allows the same thing
to be achieved but in a more elegant and consistent way.

The most crucial way in which modules differ from Sideways ROMS is
simply that modules do not need to be physically installed in the computer.
Instead, the os maintains an area of memory - the Relocatable Module
Area (RMA) - and allows modules to be loaded in to this area for execu­
tion, in any order you like. In this way the physical complexity of taking the
computer apart and inserting ROMS is removed, but at the same time the
elegance of expanding the system software is preserved. You should note
that, in fact, it is possible to install modules in ROM: this is exactly how a
large amount of the built-in software is provided, but this mechanism is not
intended for use by 'mere mortals' such as we; only for Acorn themselves.

As we have seen throughout this book, a good deal of emphasis has been
placed on BBC MOS compatibility by the authors of the os. The software
interface to modules is no exception in this respect - familiar ideas such as
service entry points and service codes are still to be found. Clearly, in order
to be able to improve upon the BBC MOS a number of features have been
removed and many more added. Nevertheless, the role of the module
writer is made a good deal simpler by perpetuating a lot of the old ideas.

If you have had experience of writing Sideways ROMS then you are very
unlikely to encounter any difficulty in understanding how the module
system is designed to work.

Module Related Commands
Before examining the detailed implementation of modules it is necessary to
have a grasp of the commands which are provided to deal with module
management. These commands are provided by the OS and take advantage
of the module interface which we will be examining later on.

119

Archimedes Operating System

*MODULES
Syntax:

*MODULES

The *MODULES command displays a list of all the modules which are
installed in the computer. No distinction is made between modules which
are supplied in ROM and those which have been installed into RAM from a
filing system. For each module present, a one-line entry appears which
details the module's name (for use with other commands), the base address
in memory where the module appears and the address of where the
module's private workspace begins. Unfortunately, *MODULES does not
trouble to tell us the amount of workspace consumed by each module,
which is a pity - you have to work it out in your head instead!

*RM CLEAR
Syntax:

*RMCLEAR

This command clears the RMA of all modules which can safely be removed
(not including system modules) and thus frees up their code space and
workspace to maximise the amount of free memory in the RMA.

*RMKILL
Syntax:

*RMKILL <module name>

The *RMKILL command removes an individual module from the RMA in the
same way as does *RMCLEAR - freeing its code space and workspace.
System modules 'murdered' in this way revive themselves after a hard
reset or upon receipt of the *RMREINIT command (see below).

120

Modules

*RMLOAD
Syntax:

*RMLOAD <filename> {<initialisation string>)

This command loads and initialises the specified file, which must be a valid
piece of module code and must be of file type 'Module', ie, with file type
code &FFA. After initialisation in this way the module will respond to its
commands and to others such as *HELP in the usual way.

The initialisation string is optional and specific to the module being loaded
- it can be used to request a particular amount of workspace for the
module or for whatever other purpose the author of the module requires.

*RMREINIT
Syntax:

*RMREINIT <module name> {<initialisation string>)

The *RMREINIT command is used to resuscitate modules which have been
*RMKILLed or *UNPLUGged (see below). It is effectively the same as the
initialisation part of *RMLOAD, but of course the module must already be
present in the machine (which is usually only the case for system modules).

*RMRUN
Syntax:

*RMRUN <filename> {<initialisation string>)

This command executes modules in the same way as *RUN executes raw
machine code programs. The file must have a file type of &FFA and is
loaded and executed if it is valid. *RMRUN is usually reserved for starting
large applications rather than just system extensions.

121

Archimedes Operating System

*RMTIDY
Syntax:

*RMTIDY

As its name suggests, *RMTIDY compacts the RMA and maximises the free
memory available. Because modules need to be warned when this is
happening (they may be running) certain modules will initiate their own
tidying up, so sounds may cease and files may be 'ensured' onto the
appropriate storage medium, for example.

*UNPLUG
Syntax:

*UNPLUG {<module n ame> }

*UNPLUG allows a system module (in ROM) to be excluded from the
initialisation process, rendering it completely inoperable until *RMREINITed
again. Because this command alters configuration memory, the module
will not reappear even after switching the power off and on. It is therefore
important to remember the module's name, and for this reason entering
*UNPLUG on its own will give a list of the modules which are unplugged.

There is a major SWI associated with module management that is known,
logically enough, as OS_Module. OS_Module is detailed because it makes
extensive reference to concepts not yet discussed. You might like to skip
forwards to it if you have any doubts during what follows.

122

11 · Writing Modules

Writing a module is very similar to writing a Sideways ROM for the BBC
MOS. However, because of the relocatable nature of modules, a number of
special considerations need to be taken into account. Furthermore, several
standards must be obeyed if the module is to be dealt with correctly by the
OS and is therefore to run successfully.

The rest of this chapter describes how modules must respond to these
various standards.

Workspace Memory
To allow a module to maintain its own status information and indeed to do
its job in the broadest sense it must have access to an area of memory it can
call its own. This workspace must be claimed from the RMA by calling the
module manager using the swr OS_Module with the appropriate reason
code. Whenever a module is entered by the os, register R12 is set to point to
one word of memory which has been set aside as minimal workspace for
that module. The os adopts a standard that this word is used as a pointer
to the actual workspace of the module (which, after all, will probably need
to be larger than one word). Such workspace may therefore be addressed
by using an instruction like:

LDR Rl2, [Rl2)

to get the real start address of the workspace into R12.

The use of this standard has several advantages. When *RMTIDY is issued
the OS can adjust the pointer for each module that has been moved as
appropriate. Also, when a module does not provide any code for shutting
itself down (known as 'finalisation code') the OS can take the default action
of de-allocating the workspace pointed to by the module's private word.

Module Errors
Modules also need to conform to the the OS standard for raising errors so
that standard error handlers can deal with them. A module should deal
with an error by following these four steps:

123

Archimedes Operating System

1. An error block (including a valid error number and a text string
describing the error) should be made ready.

2. RO should be loaded with the start address of the error block.

3. As many registers as necessary should be restored by having their
previous contents pulled back from the system stack. This assumes
that the original contents were preserved on the stack when the
module was entered. The system stack pointer is held in R13.

4. The Overflow flag V should be set before returning.

It is important to use an error number which has been allocated specifically
to the application in order that 'upstream' error handlers (which the
module may not be aware of) can deal with it correctly.

The Format of Module Code
Each module is prefixed by a set of offsets into the module which the OS
uses to despatch functions to each module in turn. These equate to the
header information at the start of Sideways ROMS and, in fact, the services
which they provide are very similar. It is crucial to remember that these are
relative offsets, not absolute addresses, in order that the module be
properly relocatable.

The module header always occupies the first eleven words of the module's
memory space and it is divided up as follows:

Offset Offset to
&00 Start-up code
&04 Initialisation code
&08 Finalisation code
&OC Service call handling code
&10 Module title string (ASCII text)
&14 Module *HELP string (ASCII text)
&18 Help and command decoding table
&lC SWI chunk base number for this module (optional)
&20 SWI handling code (optional)
&24 SWI decoding table (optional)
&28 SWI decoding code (optional)

All eleven fields must be present, though they may contain zero which the
os takes to mean that the appropriate function is not supported. The
exception is the title message which must point to a text string terminated
by zero. The fields which deal with SWis are optional since not every

124

Writing Modules

module will provide SWis of its own. Each of the fields is discussed in detail
below.

To illustrate the rather complex process of developing a piece of module
software, a lengthy example - listing 11.1 - is included at the end of this
section. The example is a printer buffer which, when installed, will use a
specified amount of memory to store characters sent to the printer to allow
you to carry on with something else while printing something out.

The listing is extensively annotated, and should you be interested in
writing module software, you are advised to study the example until
convinced of the concepts and rules involved.

Module Start-up Code
This is an offset to the code which will be executed if the module is started
as an application, normally as a result of a *RMRUN command. Because
modules do not have to provide an application it is valid for this offset to
contain zero, in which case the OS will not attempt to start it up.

On entry through this offset, the CPU will be in User Mode and have
interrupts enabled. Registers will not contain any useful information
except for R12 which, as ever, points to the word of private workspace.

The start-up entry is used whenever OS_Module obeys a 'run' or 'enter'
reason code.

Module Initialisation Code
The initialisation code is guaranteed to be called through this offset before
any other part of the module is called. This obliges it to ensure that all
other pointers, variables and so forth have been correctly established. It is
valid for a module not to have any initialisation code, in which case zero
should be placed at this offset.

Commonly, a module will use this opportunity to claim workspace, set up
R12 to point to the workspace, attach to vectors, announce its presence and
soon.

On entry, the CPU will be in Supervisor Mode (because it has just left the
Operating System) with R13 pointing to the supervisor stack and R14 will
contain a return address in the usual way. If the location pointed to by Rl2
is not equal to zero then this may be assumed to be a re-initialisation call
(ie, not the first time around) which may have to be treated differently.

125

Archimedes Operating System

Finally, RlO points to the remainder of the command line so that user
options may be decoded.

Returning from this call should be achieved by using:
MOV PC,Rl4

with the processor state, interrupt state and registers R7-Rll and R13
preserved. The Overflow flag 'V' should be used to specify whether an
error has occurred, with RO pointing to the error block and 'V' set if this is
the case.

This offset is called whenever os_Module obeys a 'run', 'load', 'reinit' or
'tidy' reason code.

Module Finalisation Code
This is the reverse of the initialisation entry point - it is the 'last call' before
the module will be expected to expire. Usually this circumstance is reserved
for situations where the module is being explicitly killed as a result of
*RMKILL or because the RMA is being tidied up as a result of *RMTIDY. It is
possible for a module to 'refuse to die' by causing an error in the usual
way; otherwise, an exit should be taken using the link register R14 as
normal. In otherwords, if the module is running, it may not be possible for
it to safely shutdown. This is an error.

On entry, RlO contains a flag which indicates whether this finalisation call
is because of 'true death' (from *RMKILL) or 'suspended animation' from
*RMTIDY or similar). RlO contains one in the former case and zero in the
latter. R12 points to the private word and R13 to the supervisor stack.

It is legitimate for a module to have no finalisation entry, in which case the
OS will de-allocate its workspace on the assumption that R12 is a valid
pointer to it.

This offset is called whenever os_Module obeys a 'reinit', 'delete', 'tidy' or
'clear' reason code.

Service Call Handling Code
The service call entry point is closely related to the same entry point for BBC
MOS Sideways ROMS and, in fact, many of the 'service codes' used to initiate
functions are the same or similar. Service calls are initiated as a result of
calls to os_ServiceCall or the BBC MOS compatible os_Byte &8F (whose use
should be minimised). This entry point is provided for compatibility only­
the OS uses the command line and SWI interfaces for most functions.

126

Writing Modules

On entry to the service call handling code Rl contains the reason code of
the desired service, R12 points to the private word, R13 points to a full
descending stack and R14 contains a return address.

The module must decode Rl and execute software to deal with it
appropriately. It is important to remember that, for much of the time,
every module installed in the computer will be being 'offered' the same
reason codes in sequence and thus it is important to preserve all the
incoming information in such a way as to allow other modules to take their
own action. In practice, it is legitimate for a module either to ignore a
reason code, or to 'claim' it so as to prevent other modules from being
offered it. These three circumstances are summarised below:

1. To refuse to deal with a reason code:
Exit with all registers preserved using MOY PC,Rl4

2. To deal with a reason code and pass it on:
Decode the reason code
Preserve all registers
Execute the appropriate software
Restore registers
Exit using MOY PC,R14

3. To 'claim' a reason code:
Decode the reason code
Execute the appropriate software
Set Rl=O (indicating the call has been claimed)
Exit using MOY PC,R14

Service Call Reason Codes
Let us now look at the meaning of each of the valid reason codes. There are
quite a few of them, so don't feel you have to digest the whole lot on the
first reading. The reason codes, which are passed to modules in register
Rl, are detailed below in numerical order. Where exit and entry conditions
may be important in passing or returning information they are given.

127

Archimedes Operating System

Rl=&OO Service Call was Claimed
Exit:

Rl=O

This reason code is returned to indicate that the call has been claimed by
the module. A module will never be called with this reason code as the OS
will prevent further calling upon receiving it.

R1=&04 Unknown OS command
Entry:

RO=pointer to unknown command string

Exit success:

Rl=O (to claim the call)
RO=O (to indicate no error)

Exit failure:

Rl=(don't care)
RO=pointer to error block

The 'unknown command' reason code is provided for BBC MOS compat­
ability - you do not need to respond to it since a more modern approach is
available and described later.

If you can understand the command then you should execute the approp­
riate software and return by claiming the call with Rl=O. If an error occurs
you should return with RO pointing to the error block.

Rl=&06 Error Pending
Entry:

RO=pointer to error

This reason code is used to advise modules that an error has occurred but
has not yet been dealt with by the error handler. To ensure that other
modules find out too, you must not claim this call - simply return with all
registers as they were received.

128

R1=&07 Unknown OS_Byte
Entry:

Exit:

R2=os_Byte number
R3=parameter 1
R4=parameter 2

Rl=O to claim, otherwise preserve contents of Rl

Writing Modules

If your module provides extra os_Byte functions they may be recognised
and acted upon by means of this reason code. If OS_Byte number in R2 is one
you provide, you should deal with it, and then claim the call with Rl=O.
Otherwise, return with all registers preserved so that other modules can
have a go.

R1=&08 Unknown OS_ Word
Entry:

Exit:

R2=0S_Word number
R3=parameter 1

Rl=O to claim, otherwise preserve as entry

This is the same as the above but for os_ Word functions. Note that
os_Word has just one parameter which is a pointer to a parameter block.

R1=&09 *HELP
Entry:

RO=pointer to *HELP command

The normal way of dealing with *HELP commands is through the
help/command decoding table offset at the start of the module. This call is
issued before *HELP decoding and should therefore only be claimed if you
wish to completely replace the *HELP command (which is most unlikely and
fairly rash).

AOS-1 129

Archimedes Operating System

Rl=&OB Release FIQ vector
Immediately after the release of the FIQ vector (similar to NMI under BBC
MOS) this call is issued to all other modules to advise them that the vector
may be claimed (see below). For more information refer to the chapter on
vectors (Chapter 20).

Rl=&OC Claim FIQ vector
This call is used to advise modules that the vector is about to be claimed.
For more information refer to the chapter on vectors (Chapter 20).

Rl=&ll Memory Mapping Change
Entry:

R2=pointer to currently active module

Exit:

Rl=O to claim, otherwise preserve as entry

The OS issues this call when it needs to reorganise the memory map of the
computer by altering the tables in the memory controller MEMC. By taking
note of this call it is possible for your module to discover that it would be
affected by such a reorganisation, and indeed may prevent such a reorgan­
isation by claiming the call. On entry, R2 contains a pointer which, if within
your module code, indicates that your module should claim the call.

R1=&12 Start Up Filing System
Entry:

R2=filing system number

When the user types a filing system startup command (eg, *NET or *ADFS)
this call is issued to warn filing systems that they should shut down. Unless
you are writing a filing system, which is outside the scope of this book, you
do not need to take any notice of this call, which must not be claimed.

R1=&27 Machine Reset Warning
At the end of the machine reset sequence this call is issued to warn modules
that a reset has occurred. This call must not be claimed.

130

Writing Modules

R1=&28 Unknown *CONFIGURE Parameter
See R1=&29 below.

R1=&29 Unknown *STATUS Parameter
The above two reason codes are issued as requests to handle an unknown
option to either *CONFIGURE or *STATUS. These were present on the earlier
BBC and Master machines and are provided on the Archimedes for compat­
ability. The os provides a new system for handling configuration options
which is described in a subsequent section.

R1=&2A Application About to Start
This call is offered around the modules to warn them that a new applica­
tion is about to start up and use the application space. No parameters are
passed on entry. A module can set Rl=O if it wants to prevent the new
application from starting up! This may be useful, for example, if the
application has data in it which is unsaved and would be destroyed by a
new application taking over the application space.

Rl=&40 Re-initialise Filing System
This call has no entry or exit parameters but signifies that the file manager
has just re-initialised. If a module contains a file system, then it should
respond to this call by adding its file system to those recognised by the
manager. This can be done using os_FSControl, with an 'add file system'
reason code.

R1=&42 Translate File Type
This call is issued when the file manager is trying to convert an
unrecognised file type number to a file type name. On entry, R2 contains
the unrecognised file type number. If a module recognises this then it
should return with the eight ASCII bytes of the file type name in R2 and R3.
For more details see the section on os_FSControl.

R1=&43 International Character Set Service
This call will be of interest to readers who are producing modules which
provide international character sets and/ or new keyboard alphabets. More
details are contained in the PRM.

131

Archimedes Operating System

R1=&44 Advise Connected Keyboard Type
This call is offered around the modules to inform them of the type of
keyboard which is in use on the machine. On entry R2::::0 for the 'old style
keyboard'. R2= 1 for the A300-A400 machine keyboards. It may be of interest
to modules which contain custom designed keyboard handlers.

R1=&45 Software Pre-reset
This call is issued to inform them that a software reset is about to occur.
This means that the break key has been pressed and the Operating System
is going to generate a reset. A software reset is distinct from a hardware
reset which is caused by the RESET button being pressed.

R1=&46 Mode Change Warning
This call is to inform the modules that the Operating System has just
changed to a new screen mode. It may be useful if a module provides screen
related functions and needs to be aware of the properties of the current
screen mode. It could update itself on receipt of this call by reading the new
settings of the VDU variables.

Module Title String
Each module must have a title string to allow it to be identified by name
when issuing *RM commands or via OS_Module. This offset points to the
start of a zero-terminated string containing the module name, ideally
adopting the Acorn standard of capitalising the first letter of each word.
Spaces and control characters must be avoided.

Help String
This offset points to the zero-terminated string which will be displayed by
*HELP MODULES etc. Spaces and tab characters (which tab to the next eight­
character column) are allowed, but no other control characters should be
included.

It is important to include a help string no matter how trivial the module.
And to keep the output of *HELP MODULES tidy it is diplomatic to follow the
Acorn standard, viz:

Module name <tab> v.vv (dd mm myyyy)

132

Writing Modules

That is, the module name should be followed by one or more tabs to make it
occupy 16 characters, the version number should be three decimal digits in
the form v.vv and the date the software was released, if included, should
be of the form 25 Feb 1965.

Help and Command Decoding Table
The help and command decoding table is the main mechanism that the OS
employs to interact with a module and thus decide whether a particular
command should be processed by that module. The table consists of a list of
records, each of which contains a keyword and the associated information
to allow that keyword to be processed - for example, the address of code
to execute, the number of parameters expected and so forth. The keyword
may be a command, a help subsection or (preferably) both.

By providing this table the module delegates the responsibility for decoding
unknown commands to the OS, thus ensuring that command processing is
consistent across all modules by preventing individual programmers from
taking on the work themselves.

Decoding Table Layout
The format of the decoding table records is shown below. A record must
appear for each keyword, whether it be a command or a help word.

ASCII keyword string, terminated by a zero byte
ALIGN to word boundary, before:

Code offset for this keyword
Parameter information word
Offset to invalid syntax string, terminated by zero
Offset to help text string, terminated by zero

Each record begins with the ASCII text string of the keyword terminated by
a zero. We then align to a word boundary and insert the offset within the
module at which may be found the code to interpret the keyword. If the
keyword is for help only then we use a zero offset to indicate this. Next
comes a word of information about the parameters (described below) and
then an offset to a text message indicating that the user has employed an
inappropriate syntax for the command. Finally, a word is included which is
an offset to the string of help text to be generated when the keyword is
used as a parameter to *HELP, eg:

*HELP ThisKeyword

133

Archimedes Operating System

Keywords should only include alphabetic characters to be safe ftom the OS
trying to decode them (believing them to be filenames or similar). The
decoding process is case-insensitive, but for display purposes it is most
elegant to continue the Acorn standard of capitalising the initial letters of
each word.

The code offset points to the routine which will be called when the
command is entered. If the offset contains zero the keyword can only be
used as a *HELP parameter (and therefore, issuing the keyword as a
command will result in a 'Bad command' error unless the command is
recognised elsewhere). Otherwise, issuing the command '*KEYWORD' will
cause the code to be executed with RO pointing to the rest of the command
line (stripped of leading spaces) and Rl containing the number of
parameters discovered by os_Cli (which uses spaces or double inverted
commas as delimiters).

The parameter information word is divided up into its four constituent
bytes, each of which has a different function:

Byte Function
0 Minimum number of parameters allowed (0-255)
1 os_GSTrans map (see below)
2 Maximum number of parameters allowed (0-255)
3 Flag byte

The minimum and maximum number of parameters fields are self­
explanatory: if too few or too many parameters are supplied by the user
the OS will display the syntax error message (pointed to by the appropriate
offset given above).

OS_GSTrans map comprises a bit for each of the first eight parameters
which indicates whether the os should pass the parameter through
OS_GSTrans before passing it on to the command execution software. This
allows the burden of identifying and translation os variables, for example,
to be placed on the OS. When a bit is set the relevant parameter will be
processed by GSTrans before receipt by the routine.

The flag byte is currently defined to contain three bits (the top three) which
indicate special cases for commands. These are detailed below.

Bit 31
Setting this bit tells the os that the command is specific to a particular filing
system. os_Cli will only acknowledge such commands if they are part of
the current filing system and so different filing systems may support their

134

Writing Modules

own specific versions of the same command without fear of being called at
inappropriate times (ie, when they are not the current filing system).

Bit 30
When this bit is set the OS takes the keyword to be a parameter of the
*CONFIGURE and *STATUS command (and only executes it where relevant).
When the code is executed, RO contains an indicator of the service required:

RO=O The command was *CONFIGURE with no parameters so print a
syntax string for the configuration commands the module
recognises and return through R14.

RO=l The command was *STATUS <keyword> so print the current
configuration setting for the keyword and return through Rl4.

RO=<any other value>
For any other value the command was *CONFIGURE <keyword>
and RO points to the rest of the command line to allow the
parameters to be extracted. The parameters should be decoded
and the configuration bytes set as appropriate.

If the module detects a syntax error in the parameters it should return
through R14 with the Overflow flag 'V' set and RO containing a value indi­
cating the type of error:

Bit 29

Value
0
1
2
3
>3

Type of error
Bad configuration option
Numeric parameter required
Parametf'r too large
Too many parameters
*CONFIGURE returns error code

Setting this bit indicates that the *HELP offset points to a piece of code
instead of a text string. This allows *HELP information to vary (as it does,
for example, under the ANFS when advising the user of their Econet station
number). The code is entered with RO pointing to a buffer area to use and
Rl containing its size. The call is made with R2 containing either zero or a
pointer to the remainder of the help string to be printed.

The invalid syntax string is printed by the OS whenever the parameters
supplied by the user are outside the bounds specified in the minimum and
maximum 'number of parameters' fields.

135

Archimedes Operating System

The help text string offset in the module header points to the text which
will be printed if the keyword it refers to is appended after a *HELP
command. The string is os_PrettyPrinted, allowing tabs and hard spaces to
be freely used within it to ensure tidy formatting on the screen.

SWI Chunk Base Number
The swr chunk base number is the first of the optional swr handling fields of
the module header. It identifies the chunk of SWis supported by the module,
a chunk being defined to be 64 SWis in total.

The os uses this information to determine which module supports the
unknown SWI which has been issued. If its number is in the range:

base to base+63

then this should be the module which deals with this SWI and the os enters
the appropriate piece of code through the next offset.

SWI Handling Code Offset
This is where the code to deal with SWis is pointed to. It is up to the author
of the module to ensure that the appropriate action is taken on receipt of
the unknown SWI number.

On entry to the code, the ARM registers hold important information. Rll
contains the SWI number within the given module (between 0 and 63), R12
points to the private word and R13 to the supervisor stack. The code is
entered with interrupts disabled and they should be re-enabled if proces­
sing is going to take more than 20 microseconds (although the code must be
able to cope with interrupts if you do re-enable them). To enable interrupts,
use the following instructions:

MOV Rn, Rl4
TEQP Rn, #1<27 ;The IRQ bit is bit 27

The code should return from the entry point through Rl4 in the usual way,
setting any relevant flags (eg, Overflow 'V' for errors) before doing so.

Note that the module does not have to deal with the 'X' prefix for SWis,
which allows optional error generation, since returning with 'V' set will
cause the OS to generate the error automatically.

136

Writing Modules

SWI Decoding Table
This offset points to a table to allow the translation of SWI names into
numbers and vice versa (but see the note below). The format of the table is:

SWI group prefix (eg, 'Wimp')
Name of 0th SWI
Name of 1st SWI

Name of nth SWI
Zero to indicate end of list

where each of the text strings (the group prefix and the SWI names) is
terminated by zero. The idea is that as many SWis as possible should have
their names included here so that the os can deal with them itself. If the os
is trying to deal with a name which does not appear in this table or whose
SWI number is greater than that of the last entry in this list, it calls the SWI
decode code (below).

SWI Decode Code
On entry RO indicates the required function and the remaining parameters
are as follows:

If RO<O then the OS wants to convert a text string (pointed to by RI) into a
number. Return through R14 with RO set to the SWI number in the range 0
to 63 or, if the SWI was unrecognised, return with RO<O.

If RO>=O then the OS wants to convert the number in RO into a text string.
It supplies a pointer to its string processing buffer in RI, and R2 supplies
the offset in that buffer at which it actually wants the string to be placed.
The limit of the size of the buffer is in R3. The module is therefore expected
to look up the string in its SWI decode table and place the string in the
buffer (starting at Rl+R2). R2 should be increased by the length of the
string. Note that the zero terminator is added by the OS, so it does not need
to be copied into the buffer.

A Note About SWI Translations
To summarise the effect of the two entry points above:

First, the SWI decoding table is used first by the os to discern whether a
particular SWI string can be recognised. If it does not appear in the table

137

Archimedes Operating System

(ie, its SWI number is greater than the last in the table) it calls the SWI
decode code.

Secondly, the SWI decode code allows an application-specific mechanism
for performing the translation to be implemented. It is up to you to get this
right if you use it!

In general, it is better to use the SWI decode table fully and put zero in the
SWI decode code offset so that it is not called. This keeps the behaviour of
the OS consistent and reduces the chances of error, although it is a little less
flexible.

OS_Module (SWI &lE)
The os_Module SWI is the low-level call which performs the operations
provided by the *RM series of os commands. It also deals with other
functions vital to the operation of the module system: for example, the
claiming and releasing of RMA space.

OS_Module takes a reason code in RO to activate each particular function,
other parameters being specific to the individual function. Usually the os
will prevent you from applying this call to modules which it thinks are
currently active - thus you may not 'kill' BASIC by calling that os_Module
function from BASIC itself.

When a filename is required (for example, to load or run a module) the file
must have the correct type (&FFA) and respond to initialisation calls when
loaded. Where the parameters refer to a module by name, the name is
taken to be a string of upper or lower case characters which is terminated
by a character with an ASCII code of less than 33. As ever, the Overflow
flag 'V' will be set if an error occurs and RO will point to an error block in
the usual way. The exact cause of such an error is specific to each indi­
vidual reason code.

RO=O Run Module
This call is equivalent to *RMRUN, with RO pointing to a module filename
on entry. If the call succeeds it will not return.

RO=l Load Module
This call is equivalent to *RMLOAD. On entry, RO must point to a filename
string. Space is allocated in the RMA and the module is loaded.

138

Writing Modules

If a module of the same name already exists it will be overwritten. The
Overflow flag 'V' will be set if an error occurs.

R0=2 Enter Module
This call is equivalent to *RMENTER Module, and allows a module to be
made the current application. On entry, RI must point to the module name
string and R2 to the parameters to be passed on to the module. If the call is
successful then User Mode is entered and the module started up.

R0=3 Re-initialise Module
This call is equivalent to *RMREINIT Module, resetting the module without
having to reload it. On entry RI must point to the module name string.

R0=4 Delete Module
This call attempts to remove the module and de-allocate any space the
module may have claimed. On entry, RI must point to the module name
string.

R0=5 Get RMA Space
This call is passed on to the Heap Manager to get information about the
RMA. It takes no entry parameters but returns, in R2, the size of the largest
free space in the RMA and, in R3, the total free space.

R0=6 Claim RMA Space
This call allows the module to claim space in the RMA to use as workspace
- performed by the Heap Manager. On entry, R3 should contain the size of
the space you want and the call will return with R2 pointing to the start of
the allocated space. If the space could not be allocated the Overflow flag
'V' will be set.

R0=7 Release RMA Space
This call has the reverse effect of the above, releasing space from the RMA
heap by calling the Heap Manager. On entry, R2 should point to the block
to release.

139

Archimedes Operating System

R0=8 Tidy RMA Space
This call polls each installed module and offers it a non-fatal finalisation
call, allowing modules to de-allocate their space if they are able to do so. It
then compacts the RMA space and reinitialises each module. Errors will be
generated if any of the modules refuse to be finalised or reinitialised.

R0=9 Clear RMA Space
This call deletes each module in turn by calling them through their finalisa­
tion entry point. Errors will be generated if any of the modules refuses to be
finalised.

R0=10 Create Module by Linking
It may sometimes be useful, especially during testing, to be able to install a
module into the system which is not physically in the RMA space. This call
allows the user to link a module, held anywhere in memory, into those
already contained in the RMA. On entry Rl points to the address in memory
at which the new module starts. On exit the module is an integral part of
the system and behaves exactly the same as a RMA resident module. In
future versions of the Operating System, it is probable that it will be
required for the word immediately before the module to contain the
module's length.

RO=ll Create Module by Copying
This call again installs a module which is not in the RMA. However, instead
of linking the module into the system at its present address, it first copies it
into the RMA space. The module is then initialised as if it had be loaded into
the RMA from disc. The call is often useful when developing a module to
copy a module, assembled into the application space, to the RMA for
testing. On entry to the call, Rl points to the start address of the module
and R2 must contain its length.

R0=12 Get Module Information
This call returns information about a given module. The information is that
displayed by the command *MODULES, ie, the module's base address and the
address of the start of its workspace in the RMA.

On entry Rl should contain 'O' on the first call. It will then return the
address of the first module in Rl and the address of its private word of
workspace in R2. Subsequent calls to the routine, with Rl unchanged, will

140

Writing Modules

return the same information on the second module, and then the third, and
so on. When the last module is reached, Rl will be returned containing 'O'.

R0=13 Extend RMA Block
This call allows a block of RMA workspace to be extended in size. The block
will have been previously claimed by using OS_Module with RQ:;;6. On entry
to the routine, R2 points to the block of workspace (as returned when block
was claimed). R3:;;amount to change the size of the RMA block by. On exit
R2 points to the start address of the extended block. This may not be at the
same address as the original block.

Printer Buffer Module
There follows a printer buffer module (listing 11.1) which will allow a
variable size buffer to be used for background printing, (for example,
whilst something else is going on).

10
20
30
40
50
60
70
80
90

100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

REM >Listll/l
REM by Nicholas van Someren
REM Archimedes OS: A Dabhand Guide
REM (c) Copyright AvS and NvS 1988

DIM code% 4000
FOR pass%=4 TO 7 STEP 3
REM Assemble for base address of zero, so
REM addresses are relative addresses from
P%=0:0%=code%

all absolute
start.

[OPT pass%
EQUD 0 ;Module cannot be run
EQUD initialise
EQUD finalise
EQUD service
EQUD title
EQUD helpstring
EQUD helptable
EQUD 0
EQUD 0
EQUD 0
EQUD 0

.title
EQUS "PrinterBuffer"
EQUB 0
ALIGN

;SWI chunk
;SWI handler
;SWI table
; SWI code

;Module title string

.helpstring ;Module help string
EQUS "Printer Buffer"+CHRS9+"1.00 (04 Dec 1987)"
EQUB 0

141

Archimedes Operating System

320 ALIGN
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

.helptable
EQUS "Buffer"
EQUB 0
ALIGN
EQUD bufcommand
EQUD &00010001
EQUD syntax
EQUD bufhelp

EQUS "BufferSize"
EQUB 0
ALIGN
EQUD sizecommand
EQUD &00010100
EQUD sizesyntax
EQUD sizehelp

510 EQUD 0

.bufhelp

;The first command

;Address of code
;Flags
;Syntax string
;Help string

;The second command

;Address of code
;Flags
;Syntax string
;Help string

;End of command table

;Help for *Buffer
520
530
540
550
560
570
580
590
600

EQUS "*Buffer
EQUB 13

turns the extra printer buffer on and off."

EQUB 10
.syntax
EQUS "Syntax:
EQUB 0

;Syntax for *Buffer
*Buffer <ON OFF>"

610 .sizehelp ;Help for *BufferSize
620 EQUS "*BufferSize without a parameter gives the size of the

extra print buffer."
630 EQUB 13
640 EQUS "With one parameter, the value is taken as the new

buffer size. "
650 EQUB 13
660 .sizesyntax ;Syntax for *BufferSize
670 EQUS "Syntax: *BufferSize [<size>]"
680 EQUB 0
690 ALIGN
700
710
720
730
740
750
760
770
780
790
800
810
820

142

.bufcommand
LDR R12, [R12]
LDRB R2, [RO), #1
ORR R2,R2,#&20
CMP R2,#ASC"o"
BNE badonoff
LDRB R2, [RO), #1
ORR R2, R2, #&20
CMP R2,#ASC"n"
BEQ setup
CMP R2, #ASC"f"
BNE badonoff

;Code for *Buffer
;Get private workspace addr
;Load first letter after command
;Force lower case
;See if it is an 'o'
;If not, word is not On or Off
;Get next letter
;Force lower case
;Is the next letter an 'n'?
;If so, do buffer 'setup' routine
;Is the letter an 'f'?
;If not, not On or Off

830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

LDRB R2, [RO], #1
ORR R2,R2,#&20
CMP R2, #ASC"f"
BEQ setdown

.badonoff
ADR RO,bufneedonoff
ORR R14,R14,#1<<28
MOVS PC,R14

.bufneedonoff
EQUD &00123456

Writing Modules

Try the next letter
in lower case
Is it an 'f'?
If it is, do buffer 'setdown'

;Cause an error
;Point RO to error block
;Set overflow flag for error
;Return with flag set

;The error block for On/Off

EQUS "*Buffer needs
EQUB 0

ON or OFF after it."

ALIGN

.sizecommand
STMFD R13 ! , {R14)
MOV Rll,R12
LDR R12, [R12]
CMP Rl, #0
BEQ tellsize
LDR R2,areweon
CMP R2, #0
BNE changewhileon
MOV Rl,RO
MOV RO, #10
SWI "OS ReadUnsigned"
ADD R9, R2, #17
LDR RlO, [R12,#4]
SUB R3, R9, RlO
MOV R2,R12
MOV RO, #13
SWI "OS Module"

;Code for the *BufferSize command
;Stack the return address
;Keepcopy of private word addr
;Load pointer from private word
;Were there zero parameters?
;If so, just print out the size
;If not, see if the buffer is on
;Is the buffer 'off'?
;If not, give an error
;Rl points to the command tail

;Convert string to decimal value
;Add 17 to the required size
;Find old size of workspace
;Find the difference
;R2 point to workspace
;Extend by signed amount

;NOTE - Arthur 1.20 has a bug in this code
;and does not set the V flag when an error occurs
;but does point to the error block with RO.

CMP RO, #13
BNE osmodulesbug
STR R2, [Rll]

STR R9, [R2,#4]
MOV R3,#&10
STR R3, [R2]
STR R3, [R2, #8]
STR R3, [R2, #12]
LDMFD R13!, {PC)

;Test if RO has changed
;If it has, the bug has shown
;Store the new workspace address
;in the private word
;Store new workspace end pointer
;Load the start of buffer pointer
;and store at 'Start of buffer'
;'Write in' pointer
;and 'Read out' pointer
;Return

.tellsize ;User has asked for buffer size
swr '•os writes"
EQUS "The extra printer buffer is "

143

Archimedes Operating System

1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880

144

EQUB 0
ALIGN
LDR RO, [Rl2, #4]
SUB RO, RO, U 7
ADR Rl,numbuffer
MOV R2,Ul
SWI "OS ConvertCardinal4"
SWI "OS-WriteO"
SWI "OS-Writes"
EQUS "bytes long."
EQUB 13
EQUB 10
EQUB 0
ALIGN
LDMFD Rl3!, {PC}

.osmodulesbug
LDMFD Rl3!, {Rl4}
ORR Rl4,Rl4,#1<<28
MOVS PC,Rl4

.changewhileon
LDMFD Rl3!, {Rl4}
ADR RO,changetext
ORR Rl4,Rl4,#1<<28
MOVS PC,Rl4

;Get the size of workspace
;Subtract 17 byte overhead
;Point Rl to a string buffer
; (which is 11 bytes long)
;Convert size to a string
;Display size

;Return

; Get around bug
;Load up return address
;Set Overflow flag
;Return with V set

;Say you can't change size
;Get return address
;Point to error block
; Set V flag
;Return

.changetext ;An error block
EQUD &00123457
EQUS "Can't change the buffer size when the buffer is on."
EQUB 0
ALIGN

.numbuffer
EQUD 0
EQUD 0
EQUD 0

.initialise
STMFD Rl3!, {Rl4}
MOV Rl,Rl2
LDR Rl2, [Rl2]
CMP Rl2, #0
LDMNEFD Rl3!, (PC}
MOV R0,#6
MOV R3, #&4000
SWI "OS Module"
STR R2, (Rl]
MOV Rl2,R2
STR R3, [Rl2, #4]
MOV R3,#&10
STR R3, [Rl2)
STR R3, [Rl2, #8]

Number/string conversion space

;Module initialisation code
;Push return address
;Keep a copy of private word addr
;Load pointer to workspace
;Check if buffer is already
;installed and if so, return.
;R0=6 means 'claim space'
;The default size is &4000 bytes
;Claim some space
;Store pointer in workspace
;Make Rl2 point to workspace
;Store size as the end pointer
;Load pointer to beginning
;Store as the beginning of buffer
; the 'write in' point

1890
1900
1910
1920
1930
1940
19SO
1960
1970
1980
1990
2000
2010
2020
2030
2040
20SO
2060
2070
2080
2090
2100
2110
2120
2130
2140
21SO
2160
2170
2180
2190
2200
2210
2220
2230
2240
22SO
2260
2270
2280
2290
2300
2310
2320
2330
2340
23SO
2360
2370
2380
2390
2400
2410

AOS-J

Writing Modules

STR R3, [R12, #12]
LDMFD R13!,(PC}

. finalise
STMFD R13!, {R14}
LDR Rl2, [Rl2]
BL setdown
CMP Rl0,#0
MOV RO, #7
MOV R2,Rl2

; and the 'read out' point
;Return

;Module finalisation code
;Stack return address
;Get pointer to workspace
;Turn buffer off
;See if it is a fatal shutdown
;Prepare to release space

SWINE "OS Module"
LDMFD R13T, {PC}

;Release space if fatal shutdown
;Return

.service
CMP Rl, #&27
MOVNE PC,R14
STMFD R13!,(R0}
MOV R0,#0
STR RO,areweon
LDMFD R13!, {RO}
MOV PC,R14

.areweon
EQUD 0

;Module service code
;Look for post-reset service
; If not, return
;Buffer is 'off' after reset

;Preserve registers
;Return

;'Is the buffer on?' flag

;+0 is start of buffer from 0
;+4 is end of buffer from 0
;+8 is the point for insertion
;+12 is the point for removal

.nextval
LDR RS, [R12, #4]
ADD R4,R4,#1
CMP R4, RS
LDREQ R4, [R12]
MOVS PC,Rl4

.isempty
LDR R4, [R12, #8]
LDR RS, [R12,#12]
CMP R4,RS
MOV PC,Rl4

. is full
STMFD R13!, {R14}
LDR R4, [R12, #8]
BL nextval
LDR RS, [R12,#12]
CMP R4,RS
LDMFD R13 ! , {PC}

.topush
STMFD R13!, {R14}

;Increment R4 with wrap around
;Find the end of the buffer
;Increment R4
;See if R4 points off the end
;If so, load up start point
;Return, returning all flags

;Test if buffer is empty
;Look at 'write in' point
; and 'read out' point
;and compare them
;Return

;Test if buffer is full
;Stack return address
;Get insertion address
;What will it be after next ?
;Look at removal address
;Will insertion catch up?
;Return

;Push a byte into buffer
;Stack return address

145

Archimedes Operating System

2420
2430
2440
24SO
2460
2470
2480
2490
2SOO
2S10
2S20
2S30
2S40
2SSO
2S60
2S70
2S80
2S90
2600
2610
2620
2630
2640
26SO
2660
2670
2680
2690
2700
2710
2720
2730
2740
27SO
2760
2770
2780
2790
2800
2810
2820
2830
2840
28SO
2860
2870
2880
2890
2900
2910
2920
2930
2940

146

BL isfull
LDMEQFD Rl3!, {R14}
ORREQS PC,R14,#1<<29
LOR R4, [R12, #8]
STRB RO, [R12,R4]
BL nextval
STR R4, [R12, #8]
LDMFD R13!,{R14}
BICS PC,R14,#1<<29

.topull
STMFD R13!,{R14}
BL isempty
LDMEQFD R13!, {Rl4}
ORREQS PC,Rl4,#1<<29
LOR R4, [R12,#12]
LDRB RO, [R12,R4]
MOV R2,RO
TST R6,#1<<28
BLEQ nextval
STR R4, [R12, #12]
LDMFD R13!,{R14}
BICS PC,R14,#1<<29

. toaltflush
STMFD R13!,{R0,Rl,R2,Rl4}
MOV R0,#&81
MOV Rl,#&FD
MOV R2,#&FF
SW! "OS Byte"
CMP Rl, #&FF
LDMFD R13!, {R0,Rl,R2,Rl4}
MOVNE PC,R14
LOR R4, [R12]
STR R4, [R12, #8]
STR R4, [R12, #12]
MOV PC,R14

.tocountpurge
TST R6,#1<<28
BNE toaltflush
STMFD R13!,{R14}
TSTP R6,R6
LDRCS R4, [R12,#8]
BLCS nextval
LDRCS RS, [R12,#12]
LDRCC RS, [Rl2,#8]
LDRCC R4, [Rl2,#12]
SUBS Rl I RS,· R4
BHI posspace
LOR R4, [Rl2]
LOR RS, [R12, #4)
ADD Rl, Rl, RS

;See if buffer is full
;If it is, get the return address
;and return with C set
;Otherwise, load insertion addr
;Store the byte
;Increment the 'write in' pointer
;Store pointer back
;Load return address
;Return, ensuring C is clear

;Pull a byte from buffer
;Stack return address
;See if buffer empty
;If it is, load the return addr
;Return with C set
;Otherwise, load the removal addr
;Load next byte into RO
;Duplicate it into R2
;Check for examine only
;If not, increment removal addr
;and write it back
;Load return address
;Return with C clear

;Flush buffer if Alt is pressed
;Push enough regs to do OS Byte
;Call OS Byte &81, check for Alt,
; (that is, check for INKEY(-3))

;Was Alt pressed?
;Pull back registers anyway
;Return if Alt not pressed
;The start of the buffer
;becomes the insertion address
;and the removal address
;Return

;Perform count and purge
;Look at the v flag
;If set, try to flush buffer
;Otherwise, stack the return addr
;Set flags as they are in R6
;If carry set, R4 is insert point
;which is then incremented
;and RS is remove point
;If carry clear, R4=remove point
;and RS is insert point ·
;Take the diference
;If diference positive, it's OK
;Otherwise, get the buffer start
;and the end of the buffer
;Add in one

2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470

Writing Modules

and take out the other SUB Rl,Rl,R4
.posspace
MOV R2,Rl,LSR #8
LDMFD R13!, {PC}

The value in Rl is now positive
Put the top 3 bytes into R2
Return

.myinsv ;Entry in the insert vector list
CMP Rl,#3 ;Check for printer buffer
MOVNES PC,R14 ;If not, return
STMFD R13!, {R0,Rl,R4,R5} ;Push some registers
BL topush ;Do the push
LDMFD R13!, {RO,Rl,R4,R5,PC} ;Return with registers

.myremv ;Entry in remove vector list
STMFD R13!, {R6} ;Stack R6
MOV R6,PC ;and put a copy of the PC in it
CMP Rl,#3 ;Check for printer buffer
LDMNEFD R13!, {R6} ;Restore R6 if not printer buffer
MOVNES PC,Rl4 ;Return if not printer buffer
STMFD R13!, {Rl,R4,R5} ;Stack up some registers
BL topull ;Do the pull
LDMFD R13!,{Rl,R4,R5,R6,PC} ;Return with all registers

.mycnpv
STMFD R13!, {R6}
MOV R6,PC
CMP Rl, #3
LDMNEFD R13!, {R6}
MOVNES PC,R14
STMFD R13!, {R4,R5}
BL tocountpurge
LDMFD R13!, {R4,R5,R6,PC}

.setup
STMFD R13!, {R14}
LDR RO,areweon
CMP RO, #0
LDMNEFD R13!, {PC}
MVN R0,#0
STR RO,areweon
MOV R2,R12
LDR RO, [Rl2]
STR RO, [R12, #8]
STR RO, [R12, #12]
MOV R0,#&14
ADR Rl,myinsv
SWI "OS Claim"
MOV RO, #&15
ADR Rl, myremv
SWI "OS Claim"
MOV RO, #&16
ADR Rl, mycnpv
SWI "OS Claim"
LDMFD RI3 ! , {PC}

;Entry in count/purge vector list
;Preserve R6
;Take a copy of PC
;Test for printer buffer
;Restore R6 if not printer buffer
;Return if not printer buffer
;Stack more registers
;Do the count or purge
;Return with all registers

;Routine to install buffer
;Stack return address
; Load the flag
;Compare with zero
;If not, already installed
;Otherwise, set the flag
;and store it.
;R12 wanted on entry to vector
;Empty buffer

;Buffer insert vector
;Use address of new routine
;and claim vector
;Buffer remove vector

;Buffer count/pu~ge vector

;Return

147

Archimedes Operating System

3480
3490 .setdown ;Routine to shut down buffer
3500 STMFD R13!,(R14} ;Stack return address
3510 LDR RO,areweon ;Load on/off flag
3520 CMP R0,#0 ;Test if buffer is on
3530 LDMEQFD R13!, (PC} ;Don't turn off if off
3540 MOV R0,#0 ;Set flag as being off
3550 STR RO,areweon ;Save the flag
3560 MOV R2,Rl2 ;Need installation value of R2
3570 MOV R0,#&14 ;Buffer insert vector
3580 ADR Rl,myinsv ;Extra entry
3590 SWI "OS Release" ;Release
3600 MOV R0,#&15 ;Buffer remove vector
3610 ADR Rl, myremv
3620 SWI "OS Release"
3630 MOV R0,#&16 ;Buffer count/purge vector
3 64 0 ADR Rl, mycnpv
3650 SWI "OS Release"
3660 LDMFD Rl3!, (PC} ;Return
3670] :NEXT pass%
3680 OSCLI"SAVE BufMod "+STR$-code%+"+"+STR$-P%
3690 OSCLI"SETTYPE BUFMOD FFA"
3700 PRINT"Printer buffer module saved as 'BufMod'"
3710 END

Listing 11.1. Printer Buffer Module.

148

12 · Writing Applications

The Operating System provides support for two essentially different types
of software: applications and utilities. Typically an application will be a
major self-contained program like a word processor or a game. Such a
program would run in the ARM's User Mode to maximise protection
against bugs. A utility would usually be an extension to the operating
system and therefore run in ARM's Supervisor Mode, with all the control
(and lack of security) which this affords.

Mechanisms are built in to provide for and formalise the execution of both
applications and utilities. There are several reasons for the Operating
System wanting to keep track of which is the current application and
where in memory it is, mainly to do with the protection of system
workspace and workspace for other programs. As a result, in order to start
an application the user must tell the Operating System through one of the
prescribed channels.

Starting Applications
One way to start an application is to enter the *GO command at the
Supervisor command line or through the os_cu swr. The *GO command
takes at least one parameter, the first parameter being the memory
address of the machine-code that needs to be executed as an application.
The rest of the parameters in the command are passed on to the
application for its specific use.

The other way to start an application from the command line is to use the
*RUN command on a file. When a machine code file is run which has no file
type set, it is run as an application in a manner equivalent to *LOADing the
file at the load address and then issuing a *GO to the execution address. An
example of an application started in this way is the TWIN text editor used
to write this book.

Applications have a certain number of privileges, notably the right to use
the lion's share of the RAM in the machine. Application memory is deemed
to start at &8000 and extend up to limits defined by the other applications
in use (if any). In order to find out what resources are at its disposal the

149

Archimedes Operating System

application may issue a number of SWis. The most important of these and
the one that all applications will need to use is os_GetEnv.

OS_ GetEnv (SWI &10)
This SWI returns a number of important pieces of information about the
'environment' in which an application is running. It takes no parameters
but returns three pointers in RO, Rl and R2.

RO points to the text of the command line used to start the application
running. This string will have been modified by aliases, by parameter
substitution and, if *GO was used to start the application, the address after
*GO will have been removed. Thus the string will always be a command
followed by a parameter list for the application. Applications which can
take a parameter such as a file name (eg, text editors) may therefore
examine this string for filenames etc.

Rl points to the first byte of memory that is not available to the
application, ie, if Rl contains &60000 then the application may use the
memory from &8000, the start of application RAM, to &SFFFF but may not
use the bytes from &60000 upwards. If the application is going to run for
more than a few instants, or if it is going to build a long stack, it should set
R13 (the usual stack pointer) to this value so that the stack will extend
downwards into the application space from the top.

R2 points to a five byte area containing the absolute time at which the
application was started. This is in the standard format of the number of
centiseconds since the start of this century and can be converted to a
displayable string using the SWI os_convertStandardDateAndTime.

Alternative Ways of Starting Applications
There are two further ways in which a piece of machine code can be started
as an application. Firstly, machine code intended to be run at &8000 can be
given file type of &FF8 (Absolute) using *SETTYPE and the the file can be
*RUN. Alternatively the code may be in a module, as BASIC vis, and be
executed when that module is started. To demonstrate the use of
OS_GetEnv in this situation enter the following few lines at the BASIC
prompt:

150

SYS "OS GetEnv" TO A%,B%
SYS "OS-Write0",A%
PRINT -B%,-HIMEM

Writing Applications

The BASIC module is the current application so you can see the string that
started BASIC running and the workspace limit, along with BASIC's pseudo­
variable HIMEM which defines the upper limit of memory for BASIC.

In order to allow a module to start up as an application, it must respond to
a *Command defined in its command table which activates the module as
an application by using os_Module with R0=2. Some example code to do

- this can be seen in the Shell module listed below.

Temporarily Running Another Application
A particularly useful thing to be able to do from inside an application is to
temporarily run another application. If, for example, you are working
within a text editor and you need to perform some quick calculation, it
would be a pity if you had to save your work and exit completely. Another
example is wishing to use the *COPY command in its 'quick' mode where it
behaves as if it were an application. Note that, being able to do this is not
multi-tasking since only one application is running at a time, but it is a
major timesaver nevertheless. In order for applications to be nested in this
way we need to be able to exit from them just as neatly as we enter them,
preserving important workspace and so forth as we go.

All the methods of starting applications examined above are effectively
'permanent', ie, once an application is running it is the only one that the
Operating System takes care of. To leave that application an OS_Exit SWI
should be issued, returning control back to an Operating System handler
routine designed for this purpose. By default this handler returns control to
the Supervisor (with its '*' prompt). However, an application started prev­
iously can set the address to which control will be returned by the exit
handler using the SWI os_changeEnvironment. This allows control to be
returned to it later, providing the basis for a system of nested application
calls.

To change the OS_Exit handler return address RO should contain I I and SWI
os_changeEnvironment should be called. On return RI will contain the
new return address. On return from this SWI RI will contain the old return
address which should be stored safely for use when os_Exiting from your
application, so that a string of applications may be nested.

Top Down Applications
If one simply sets the return address to some location within the current
application before exiting, there is a good chance that the new application
will blindly trample over all of the available workspace, unaware that

ISI

Archimedes Operating System

other applications may wish to preserve it. This is, of course, the situation
where just one application is in use at a time, but is insufficient to provide
for nested applications. Instead, an application which is designed to use
workspace from the top down can protect itself from other applications by
lowering the upper workspace limit which will be returned to other
applications, thus rendering itself 'invisible'.

os_changeEnvironment provides a call for this purpose: when entered
with RO=O it will set the apparent top of workspace to the value in Rl. By
writing an application in such a way that it steals workspace from the top
of memory and sets the new workspace limit to just below the lowest
location, it uses other applications which will not conflict.

An example of this approach is detailed later in the "Shell" module. When
this module is entered as an application it examines the upper workspace
limit and reduces it by 256 bytes. It then saves the previous values of the
environment parameters and goes about its business of repeatedly reading
lines entered at the keyboard into a buffer and passing them to the
command line interpreter. It continues to do this until a blank line is
entered, at which point it restores the old environment parameters and
exits. Some care needs to be taken, since on returning with os_Exit the
contents of registers are undefined.

Although the Shell module is only a demonstration, not too useful in itself,
it is a fully-fledged application. You might like to use it as a template for
producing your own top down applications.

The TWIN Text Editor
Acorn's TWIN editor uses the top down approach in an interesting (if a little
naughty) manner. TWIN is designed to be loaded somewhere in the middle
of the application workspace; the memory above the program code is used
to store the text being edited. The memory below the start of the program
is made available to other applications that can be started from the
command line (eg, *COPY). TWIN is not altogether satisfactory in this
respect as the position at which it is loaded is fixed (by its default load
address) and can only be altered by means of system calls or a special
utility. A much better solution to the problem, and one used by the Shell
program, is to have the program code resident in a module (and thus
always accessible) and, when the program is started as an application, to
take workspace from the top of the available RAM as discussed above.
When other applications are started from the command line they may use
workspace up to the new limit and this process may be repeated until no
more workspace is available.

152

Writing Applications

An alternative way of allocating workspace would be to allow applications
to claim workspace from within the RMA. This has the virtue that the size
of the workspace may be dynamic, because the Operating System allows
the memory in the workspace to be consumed and replaced at will using
memory management routines; these are discussed in the next section.

Memory Management
All applications require memory of one form or another in which to
operate. When programming in BASIC it is not necessary to concern oneself
with issues of memory management because the BA$IC interpreter does the
work for you. However, if you intend to write stand-alone applications of
your own, particularly in assembler, it is important to be aware of the
facilities provided for managing memory. These issues are made all the
more important when more than one application is running under a multi­
tasking OS such as RISC os.

A number of routines are provided to allow applications to do their own
memory management. They are all based on a standard memory concept,
known as a 'heap', from which chunks of memory may be claimed and
released by applications with the assistance of the OS.

ARM Memory Structure
The ARM CPU has a possible address space of 64Mbs, of which only the
lower 32Mbs is relevant in Archimedes because this is the space in which
RAM is seen to exist. The ARM and MEMC chips contrive to make this 32Mbs
space (known as the 'logical' address space) available to applications in
User Mode by translating references to it through MEMC's internal tables.
This allows the OS to decide which sections of the logical address space are
actually present as 'physical' memory, and this forms the basis of a
segmented 'virtual' memory system.

Physical memory is divided up into 128 'pages' whose size varies according
to the amount of memory actually fitted to the machine: 300 Series
computers have pages of Bk while 400 series machines have pages of 32k.
Blocks of pages are allocated as the workspace for particular OS functions
according to the configuration settings used. See the chapter on the ARM
support chips for more detailed information.

153

Archimedes Operating System

Heap Management Software and SWis
The OS Heap Manager provides routines which allocate and de-allocate
chunks of memory from a chosen area of memory. This mechanism is used
by the OS to deal with memory management within the RMA amongst
others. User applications can make use of the Heap Manager's facilities by
providing it with information about the size of a block of memory and then
calling it for allocations and de-allocations.

The Heap Manager keeps track of the component chunks of the heap by
means of heap description blocks which consist of four word units. To start
using the Heap Manager you need some memory; if you are writing an
application you may use the application workspace or, if you are writing a
module, you may claim memory from the RMA using os_Module with R0=6
(see the chapter on Modules). The pointer to the start of free memory
(perhaps returned by os_Module) should be handed to the Heap Manager
for it to place its heap descriptor block at the start. After the heap has been
initialised (see below) other calls may then be made to the Heap Manager
to allocate and de-allocate blocks.

One swr is used to deal with the Heap Manager - os_Heap. On entry, it
takes a reason code in RO and appropriate parameters in other registers,
returning with results in registers and the Overflow flag 'V' set if any error
occurred.

OS_Heap (SWI &lD)

RO=O Initialise Heap
This call must be made once before any use is made of other calls to
OS_Heap. On entry, Rl should point to the start of the area of memory to be
used as a heap (the first four words of which will be used as the heap
description block) with R3 containing its size (in bytes). Both of these
values must be word-aligned and they may not exceed 32Mb and 16Mb
respectively.

RO=l Describe Heap
This call gives information about the state of the heap - its largest
available block and the total amount of free space. On entry, RO must point
to the heap description block. The results returned are the size of the
largest available block in R2 and the total free space in R3. The Overflow
flag 'V' is set if the heap description block was invalid.

154

Writing Applications

R0=2 Claim Heap Block
This call allocates a block from the heap if sufficient space exists. On entry,
Rl must point to the heap description block and R3 must contain the
desired size of block. On return, either R2 is a pointer to the allocated block
(if sufficient space was free) or the Overflow flag 'V' is set (if there was
insufficient space).

R0=3 Release Heap Block
This call releases a block of the heap if the supplied pointer is valid. On
entry, Rl must point to the heap description block and R2 to the block to be
de-allocated. No results are returned but the Overflow flag 'V' will be set
if either of the block pointers was invalid.

R0=4 Extend Heap Block
This call allows you to increase or decrease the size of a currently allocated
block. On entry, Rl points to the heap and R2 to the block itself with R3
containing the signed 32-bit number by which the size of the block should be
altered. On return, R2 contains a pointer to the new block. Note: since the
Heap Manager may have had to allocate new space to accommodate your
request, the pointer to the block may have changed - you must take note of
any such change yourself.

There is a bug in Arthur 1.20 which means that this call does not always
work. Sometimes it fails to reallocate the block correctly if the block needs
to be moved within the heap. Unfortunately, no detailed information was
available at the time of writing.

RO=S Extend the Heap
Contrary to the description in the Programmer's Reference Manual, this
call is not implemented in Arthur 1.20.

Listing 12.1 at the end of this section illustrates the OS_Heap SWI. A heap is
initialised and three blocks of memory are claimed from it. The procedure
PROCdescribeheap calls os_Heap with RO=l in order to extract details
about the heap.

155

Archimedes Operating System

OS_ ValidateAddress (SWI &3A)
One SWI is provided which allows you to establish whether a range of
memory locations is accessible in User Mode (ie, that MEMC has the
specified logical memory range paged into physical memory).

On entry, RO and Rl contain the lower and upper limits of the address
range to be checked. The call returns with the Carry flag 'C' clear if the
address range is currently paged into physical RAM and 'C' set if not.
Listing 12.3 at the end of this section illustrates the use of
os_ validateAddress.

There is a bug in Arthur 1.20 which causes references to some addresses
below screen memory to be marked as valid when, in fact, they are not
paged into physical memory - beware!

General Guidelines on Compatibility
Acom documentation suggests a number of guidelines which, if followed,
will maximise the chances that existing software will be easily portable
onto future versions and releases of the OS, so that programs written will
run under Arthur 1.2, RISC OS and any future release. It is important to
remember that this is one of the reasons we have an Operating System at
all - to improve portability. Common sense is the best guide here, so SWis
should be used instead of calling ROM addresses, hardware should never be
written to directly and so on. Many of the SWis the os provides are present
to allow access to internal information - be sure to use them. It is a good
idea to take advantage of the WIMP facilities when writing applications, as
this is clearly Acorn's intention in providing them.

Another aspect of portability, which is critical, is to allow software to be
easily installed on hard discs. This raises a number of issues to do with
directory structures, in particular assumptions about the root directory.
Firstly, files should never be referred to by their full pathname, eg,
$.MyApp.RunCode. If they are, moving the program onto a hard disc
means duplicating the whole directory structure.

Instead, utilities used by your application should be kept in a library
directory in the root, resources such as fonts should be kept in some suitably
named directory in the root, eg, $.Fonts, and anything else should grow
from a sub-directory whose name is the same as that of the application.
You can then use the *URD command to set this application directory as the
User Root Directory during initialisation. By ensuring that the application

156

Writing Applications

only ever refers to its own directory using the URD symbol '&' we can keep
the application easily portable.

To get things started there could be a text file in the library used to start the
application called, say, "StartApp" and containing:

*URD $.MyAppDir To set up the User Root
*SET Font$Prefix $.Fonts To set up resources (ie, the fonts)
*RUN &.RunCode To start the application

To move the application to another system with a hard disc, all that needs
to be done is to copy the application directory tree structure, the contents of
the library and the contents of the resource directories over to the hard disc
root. Then, simply editing the the first line of the startup file will install the
new application.

The Shell Module - Source Code
10 REM >List12/1
20 DIM code% 511
30 FORpass%=0T03STEP3
40 P%=0:0%=code%
50 [OPT pass%+4
60 EQUD start ;Entry point as an application
70 EQUD 0
80 EQUD 0
90 EQUD 0

100 EQUD title
110 EQUD help
120 EQUD helptable
130 EQUD 0
140 EQUD 0
150 EQUD 0
160 EQUD 0
170
180 .title
190 EQUS "ShellModule"
200 EQUB 0
210 .help
220 EQUS "Shell Module"
230 EQUB 9
240 EQUS "1. 00 (05 Jul 1988)"
250 EQUB 0
260 ALIGN
270
280 .helptable
290 EQUS "Shell"
300 EQUB 0
310 ALIGN
320 EQUD doshell ;Entry point for the command

157

Archimedes Operating System

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

158

EQUD 0
EQUD shellsyntax
EQUD shellhelp
EQUD 0

.shellhelp
EQUS "*Shell starts up the shell application."
EQUB 13
.shellsyntax
EQUS "Syntax : *Shell"
EQUB 0
ALIGN

.doshell
ADR Rl,title
MOV R2,RO
MOV RO, #2
SWI "OS Module"

.start
SWI "OS GetEnv"
SUB Rl2~Rl,#&100
MOV R0,#0
MOV Rl, Rl2
SWI "OS ChangeEnvironment"
STR Rl, (Rl2, #8]
MOV RO, #11
ADR Rl,exitback
MOV R2,Rl2
SWI "OS ChangeEnvironment"
STMIA Rl2, {Rl,R2)
.loopback
SWI &12A
ADD RO,Rl2,#32
MOV Rl, #127
MOV R2,#32
MOV R3,#255
SWI "OS ReadLine"
CMP Rl, #0
BEQ exit
SWI "OS CLI"
.exitback
B loopback
.exit
MOV R0,#0
LDR Rl, [Rl2, #8]
SWI "OS ChangeEnvironment"
MOV R0,#11
LDMIA Rl2,{Rl,R2)
SWI "OS ChangeEnvironment"
MOV R0,#0
MOV Rl,#0
MOV R2,#0

;Pass the name of the module
;the command tail
;R0=2 for start module app.
;Do the SWI

;Find the RAM limit
;Move RAM limit down
;Indicate change in RAM limit
;new RAM limit

;Store old RAM limit
;Indicate change in EXIT handler
;New Exit address
;Value returned in Rl2 on exit

;and store the old lot

;Print a star
;find the line buffer
;line length

;read a line
;Is it of zero length ?
;If so to do the Exit
;Otherwise execute the command

;and loop back

;To reset the RAM limit
;get old RAM limit
;and set it
;Resetting EXIT handler
;get old handler
;and set it

Writing Applications

SWI "OS Exit"

l
NEXT

;And exit 860
870
880
890
900
910

OSCLI"Save ShellMod "+STR$-code%+"+"+STR$-P%
OSCLI"SetType ShellMod FFA"

Listing 12.1. The Shell source.

10 REM >List12/2
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Reserve plenty of space for the heap.
70 REM and initialise it.
80
90 DIM Heap &10000

100 SYS "OS Heap",0,Heap,,&10000
110 PROCdescribeheap
120
130 REM Get three blocks from the heap.
140
150 SYS "OS Heap",2,Heap,,&400 TO ,,blocklk
160 SYS "OS-Heap",2,Heap,,&800 TO ,,block2k
170 SYS "OS-Heap",2,Heap,,&1000 TO ,,block4k
180 PRINT"Blocks of 1,2 and 4k have been allocated at

&";-blocklk;",&";-block2k;" and &";-block4k;" respectively."
190 PROCdescribeheap
200
210 REM Return the lk block to the heap and extend
220 REM the 4k block by lk.
230
240 SYS "OS Heap",3,Heap,blocklk
250 SYS "OS-Heap",4,Heap,block4k,&400
260 PRINT"The lk block has been deallocated, and the 4k block

extended by lk"
270 PROCdescribeheap
280
290 REM Note: extending the 2k block instead will reveal
300 REM a bug in Arthur 1.20.
310 REM SYS "OS_Heap",5 does not work at all!
320 END
330
340 DEF PROCdescribeheap
350 SYS "OS_Heap",1,Heap TO ,,largeblock,space

159

Archimedes Operating System

360 PRINT'"The largest block is &";-largeblock;" bytes long."
370 PRINT"There are &";-space;" bytes free.'"
380 ENDPROC

Listing 12.2. The Heap.

10 REM >Listl2/3
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Define step size as &2000, start address as O,
70 REM total memory found as 0 and validate start address.
80
90 chunk%=&2000

100 addr%=0
llO total%=0
120 SYS "OS_ValidateAddress",addr%,addr% TO ;C%
130
140 REM As long as addr% is in user area and addr% is
150 REM not valid, increment the address and try again.
160
170 WHILE addr%<&2000000
180 "WHILE C% AND 2
190 addr%+=chunk%
200 SYS "OS ValidateAddress",addr%,addr% TO ;C%
210 ENDWHILE
220
230 REM Once a valid address is found, find how long the
240 REM valid block of memory is.
250
2 60 PRINT "Block from & "; -addr%;
270 start%=addr%
280 WHILE (C% AND 2)=0
290 addr%+=chunk%
300 SYS "OS ValidateAddress",addr%,addr% TO ;C%
310 ENDWHILE
320 PRINT" to &";-addr%-l;" that is &";-addr%-start%;" bytes

long"
330 total%+=(addr%-start%)
340 ENDWHILE
350
360 REM Once address is over &2000000, print out the totaL
370
380 PRINT ;total%/1024;"k bytes asigned."
390 PRINT"Note : There is a bug in OS_ValidateAddress in Arthur

1.20 - "
400 PRINT"the last block will be incorrect."
410 END

Listing 12.3. Validate Address

160

13 · The Window Manager

This chapter is devoted to the intricacies of the Window Manager,
·sometimes known as the WIMP system, and how to use and program with
it. The Window Manager is used extensively by the Desktop, so if you are
not already familiar with the Desktop you might find it useful to
experiment with it before proceeding.

T_he Window Manager provides a rich set of facilities which allows
programmers to produce applications with a consistent style of user
interface. This consistency has benefits both for non-technical users
(because they have less to remember) and for programmers (because it
simplifies programming). Furthermore, adopting Acorn's window stan­
dard will ease the movement of applications up to future versions of the
os. This is of particular relevance in allowing several applications to be
used concurrently under Operating Systems such as RISC OS.

What's On Offer?
The Window Manager co-ordinates the user interface aspects which have
recently become fashionable throughout the computer world, namely:
windows, icons, mice and pull-down menus (hence the acronym WIMP).
This approach to user interface design was popularised by the Apple
Macintosh, though its origins were in Xerox's work with the program­
ming environment known as Smalltalk.

The idea is that different pieces of work appear on the display as a series of
windows, analogous to sheets of paper. Their size, shape and position may
be altered by the user to suit the task currently in hand. This allows each
piece of work to be imagined as occupying as much display space as
necessary, with some smaller part of it actually being visible according to
the prevailing size of the window. By re-sizing and re-positioning
windows the user can change the focus of their attention as desired. Such
effects are achieved through the use of the mouse, which allows positions
on the display to be indicated simply by 'pointing'. The three mouse buttons
are used to select and adjust various controls by 'clicking' on display
'buttons'. These buttons are defined to have specific meanings under the
Window Manager: the left-hand button is for 'selection', the middle button

AOS- K 161

Archimedes Operating System

for pulling down 'menus' and the right-hand button is for 'adjusting'
selections.

Icons are application-specific graphical objects, usually designed so that
they represent the function they affect, which may be positioned within a
window for selection with the mouse.

'Menus' of functions may be provided that allow software to be controlled
by pointing to a menu entry rather than typing at the keyboard, and this
mechanism can be extended more or less ad infinitum by the use of sub­
menus from the first menu and so on. The use of menus ensures that the
user can only make valid selections (since the menus won't contain invalid
ones) and thus greatly reduces the scope for user error.

The Structure of Windows
A window consists of an area containing the work (known as the 'Physical
Work Area' or PWA) bounded by a number of controls for the window. In
the centre of the top of the window is a 'title bar' which contains the
textual name attached to the window. A window may be 'dragged' around
the display by holding down the select button, while the pointer is within
the title bar, and then moving the pointer elsewhere, releasing the button
when the desired destination is reached.

At the top left corner of most windows are two buttons: 'go to back' which
moves the window behind any other windows on the screen; and 'close'
which removes the window completely. At the top right corner is the
'toggle' button which causes the window to expand to its full size and
move to the front (if it is not already there).

In the bottom right-hand corner of most windows is a 'stretch' button -
dragging it allows the overall size of the window to be increased and
decreased within limits set by the programmer. The maximum possible size
is the same as that achieved by clicking on the full size button.

Along the right-hand side and/or the bottom edge of most windows are
'scroll bars' . When the window is not as large as the maximum working
area it is possible to scroll the PW A over the whole extent of the work
(known as the 'Logical Work Area' or LWA) to make any portion visible. At
each extreme of the scroll bars are arrow buttons which scroll the PWA in
the appropriate direction by a small amount. Within the scroll bars are
shaded boxes whose size indicate how much of the LWA is visible within the
PWA. Their position indicates which part (rather than how much) is visible.
You can drag these boxes within the scroll bars to make large changes to
the visible portion; repeated clicking on the arrows gets a little tedious.

162

The Window Manager

Window Manager Co-ordinate Systems
The main part of any window is the Physical Work Area (PWA) ~f that
window. This is bounded by two co-ordinate pairs which define its position
on the display - the bottom left-hand corner (minimum values of X and Y)
and top right-hand corner (maximum values of X and Y). These are known
as (PWA_min_X,PWA_min_Y) and (PWA_max_X,PWA_max_Y). In addi­
tion, an offset co-ordinate is required to define which part of the Logical
Work Area (LWA) is being displayed by the window; this co-ordinate is
relative to the LW A origin, and it is known as (Scroll_X_offset,
Scroll_Y_offset). It can be seen that, by adjusting the values of these
offsets, it is possible to control which part of the LWA is visible within the
PWA.

Note: confusingly, the Scroll_X_offset is the offset of the left edge of the
PWA from the left edge of the LWA, but the Scroll_Y_offset is the offset of
the top edge of the PWA from the bottom edge of the LWA. The reason for
this appears to be that graphics origins are usually at the bottom left corner
of the display, whereas text origins are usually at the top left.

Finally, the LWA origin may be displaced from the graphics origin of the
display, thus adding another level of complexity to co-ordinate calcula­
tions! The co-ordinate of the LWA origin (and bottom left-hand corner) is
defined by (LWA_min_X,LWA_min_Y) and its other extreme by the co­
ordinate (LWA_max_X,LWA_max_Y).

These systems of co-ordinates allow our application and the Window
Manager to decide where on the display to plot text and graphics. All
plotting is achieved relative to the LW A origin, so co-ordinates must be
calculated in these terms before plotting. Furthermore, the Window
Manager provides the moveable parts of the scroll bars automatically, so
it needs to be able to divine what amount of the LWA is visible in each
direction.

Programming Using the Window Manager
Writing applications which take advantage of the Window Manager
requires an approach which programmers, whose experience is limited to
BASIC, may find a little unusual: window applications respond passively to
'advice' from the Window Manager about what to do next, rather than
actively testing for the occurrence of particular conditions. This approach,
known as 'event-driven' programming, allows the Window Manager to
pass information to each window application selectively, in much the same
way as the BBC MOS passes information to Sideways ROMS. This is done by

163

Archimedes Operating System

using a system of 'reason codes'. Such selectivity allows the Window
Manager to time-slice the computer's processing power and thus provide a
limited form of multi-tasking to window applications. Future versions of
the os are expected to offer true multi-tasking by extending this system,
hopefully without requiring much re-writing of window applications.

Before we move on to examine the stages involved in getting an
application running under the Window Manager, it is worth noting that
most of the work involved needs to be completed before testing begins! Do
not expect to be able to test a window application stage by stage, since
there is too much interaction between the components for this to be
feasible. Instead, it is better to use the examples herein as a template for
developing your own applications and modify them, rather than start from
scratch.

In this section we shall make extensive reference to the 'Wi~pMaze'
example - listing 13.1 at the end of the chapter. This is a window
application which makes use of many, though not all, of the facilities
provided by the Window Manager. It randomly generates a rectangular
maze within a window and allows the user to traverse it, using the mouse
to leave a trail of dots whenever the left-hand button is pressed. These
dots may be deleted by back-tracking over their trail while holding down
the same button. The entrance to the maze is always in the bottom left
corner and the exit in the top right comer. The scroll bars may be used to
change the portion of the maze which is visible at any moment. You might
like to try running the application to try it out before reading on.

Writing a Window Manager Application
The Stages
To get a window application started, the first thing to do is to call the
Window Manager's initialisation swr "Wimp_Initialise". This takes no
parameters and simply returns the version number of the Window
Manager software being used. Having done this we need to set up a
control block (block%) containing the various parameters which define the
window. These parameters are arranged within the control block as show
on the page opposite:

164

The Window Manager

Offset
!O
!4
!8
!12
!16
!20
!24
!28
?32
?33
?34
?35
?36
?37
?38
?39
!40
!44
!48
!52
!56
!60
!64
!68
!72

!84
!88

Parameter (decimal)
PWA_min_X
PWA_min_Y
PWA_max_X
PWA max Y
Scrofi_X_offset initial value
Scroll Y offset initial value
Handle fur window to overlay (-1 means top)
Window control flags (see below)
Title bar foreground colour
Title bar background colour
PWA foreground colour
PWA background colour
Scroll bar foreground colour
Scroll bar background colour
Title bar highlight colour
Reserved
LWA_min_X
LWA_min_Y
LWA_max_X
LWA_max_Y
Icon presence flags
Reserved
Reserved
Reserved
Window title string, terminated by ASCII 13
(up to 11 characters)
Total icons in this window
Icon data hereafter

Once these parameters are set up we need to call the Window Manager to
tell it to create the window (FNcreatemain). Note that this call does not
actually cause the window to appear; it merely copies the block parameters
into the Window Manager's workspace and returns a handle for the
window (ourwindow%).

A number of flag bits are included at offset !28 in the block: they have the
following effects if set on entry:

Bit Meaning when set
0 Title bar present
1 Window may be moved
2 Vertical scroll bar present
3 Horizontal scroll bar present

165

Archimedes Operating System

Bit Meaning when set
4 Window only contains icons
5 Window is a sub-window of another
6 Window may be moved off display
7 Window has no 'back' or 'close' buttons

The following bits are flags set by the Window Manager to return status
information and have no effect if set by the application:

16 The window is open
17 The window is un-obscured
18 The window is full size

To make the window appear we put the window's handle at the start of a
block (the remaining space in the block is reserved for parameters to be
returned) and call the swr ''Wimp_OpenWindow" (PROCopenwindow). We
now have an empty window on the display.

The Polling Loop
Because window applications are event-driven, the main focus of any
application is the 'polling loop' in which the application repeatedly asks the
Window Manager what to do next. The Window Manager provides the
SWI ''Wimp_Poll" to achieve this: it takes a function 'mask' in RO (see
below) and a pointer to a block (for results returned) in Rl. The call returns
a reason code in RO (reason%) and a pointer to the result block in Rl
(info%). The reason code indicates the action to be taken by the application
from the following list:

Reason Meaning
Code
0 No activity required
1 Window needs re-drawing
2 Window needs to be (re)opened *
3 Window needs to be closed *
4 Pointer leaving window
5 Pointer entering window
6 Mouse buttons have changed
7 User 'dragging' window *
8 User pressed a key
9 User selected a menu
10 User 'scrolling' window *

When calling ''Wimp_Poll" the bits in the function mask word supplied in
RO can be used to disable many of the reason codes listed above - for a

166

The Window Manager

given reason code number, the bit with the same number should be set to
disable it (those marked with '*' may not be disabled). The normal
requirement is for all events to be enabled, in which case a mask of zero is
used.

Dealing with Reason Codes
For an application to work correctly it needs to respond to many of these
reason codes by taking appropriate action, frequently by calling other
Window Manager routines. Each reason code indicates some effect
initiated by the user's actions and they are detailed individually in the
following pages.

0 No Activity
The zero reason code indicates that the user has not taken any actions
which affect the application. Usually this reason code would be ignored,
but certain applications will need to update the display from time to time
(for example, clocks) and this 'null' reason code provides an opportunity to
perform this kind of action.

In listing 13.1 the null reason code triggers PROCdothatthing which checks
to see if the user has quit the program or the end of the maze has been
reached. If not, it checks the state of the mouse buttons and updates the
display accordingly. The correct mechanism for this kind of mouse sensing
is to use reason code six, but because that only indicates a change of state
of the buttons rather than their current state our lazy programmer has
opted for this (slightly naughty) approach!

1 Window Needs Re-drawing
This reason code is supplied to indicate the start of the sequence required to
update a window on the display, perhaps because it has been moved, re­
sized or become visible because of changes to the windows formerly on top
of it. Of course, this process is also required the very first time a window is
displayed.

The parameter block, pointed to by Rl, simply contains the handle of the
window concerned at offset Rl +O.

To respond to the re-draw request, the application must first ask the
Window Manager to re-draw the parts it is responsible for. This is
achieved by calling the swr "Wimp_RedrawWindow" with a parameter
block (just containing the window handle) pointed to by Rl (PROCredraw).

167

Archimedes Operating System

The result of this call is a flag in RO which indicates whether there are more
sections to re-draw.

At this point we must divert for a moment to consider the re-drawing
process. If you imagine a number of windows overlapping on the display
then, when the rearmost is moved to the front, the minimum area that
needs to be redrawn (to fully update the display) consists of those
rectangles of the window which have just become visible.

The Window Manager provides the SWI "Wimp_GetRectangle" which
should be called repeatedly and will return a flag in RO, indicating if there
are any more rectangles to be re-drawn, and a parameter block, pointed to
by Rl, containing the co-ordinates of any such rectangles, to allow the
application to divine what area it needs to re-draw.

The format of the parameter block returned by "Wimp_GetRectangle" is as
follows:

Offset
!O
!4
!8
!12
!16
!20
!24
!28
!32
!36
!40

Parameter
Window handle
PWA_min_X
PWA_min_Y
PWA_max_X
PWA_max_Y
Scroll_X_offset
Scroll_ Y _offset
Graphics (clip) window min_X
Graphics (clip) window min_Y
Graphics (clip) window max_X
Graphics (clip) window max_Y

Note: this information is in the same format as is returned by the SWis
"Wimp_RedrawWindow'' and ''Wimp_UpdateWindow" (see later) so as to
remove the need to modify any parameters before passing them on.

Thus the application needs to repeatedly examine the flag in RO and, while
the flag is set, repeatedly extract and convert the PWA parameters from the
block to allow it to re-draw the appropriate areas. In practice, many lazy
programmers will be tempted to rely on the fact that the graphics clip
window is set to the correct values and thus re-draw more than is
necessary. This is an effective but slow approach and is rather against the
spirit of efficiency which the rectangle sectioning system tries to promote~
please resist the temptation!

To summarise then, the whole process might be 'pseudo-coded' as follows:

168

The Window Manager

Reason code 1 received
SYS 'Wimp_RedrawWindow'' ,,block% TO flag%

WHILE flag%
extract co-ordinates
re-draw the specified rectangle
SWI "Wimp_GetRectangle" ,,block% TOflag%

END WHILE

You can see exactly this kind of code in PROCredraw in listing 13.1. Because
the maze cells are of fixed size, the program relates the re-draw rectangle
to the cells of the maze and then plots them using PROCdrawcell.

2 Window Needs to be (Re)Opened
This reason code is produced whenever a window is brought to the front,
re-sized, or scrolled. Normally it is enough simply to pass on the parameter
block returned on this reason code to the SWI "Wimp_ Open Window''. Som1
applications may wish to set flags to indicate that a particular kind of
window has been opened.

In listing 13. l we simply pass on the parameters to 'Wimp_ Open Window''
untouched.

The parameters returned by this call are in the block pointed to by Rl at the
following offsets:

Offset
!O
!4
!8
!12
!16
!20
!24
!28

Parameter
Window handle
New PWA_min_X
New PWA_min_Y
New PWA_max_X
New PWA_max_Y
New Scroll_X_offset
New Scroll_Y_offset
Window handle of window to put on top

Note: the format of this parameter block is the same as that required by SWI
'Wimp_OpenWindow'' so it may be passed on unaltered.

3 Window Needs to be Closed
This reason code has the opposite meaning to the one above - it indicates
that the user has clicked on the 'close' box of the window. Once again, it is
almost sufficient to pass on the parameter (the window handle, at Rl +O) to
the SWI 'Wimp_CloseWindow". Usually though, your application will also

169

Archimedes Operating System

want to set a flag indicating that the window has been closed and that the
application should therefore shut down any data relating to the window.
This is precisely what happens in the example program, where the flag
'exitwhenredrawn%' is set to indicate impending termination.

4 Pointer Leaving Window
This reason code is generated each time the mouse pointer is moved out of
the PW A, the trigger point being the edge of the PW A and not the edge of
the whole window. The window handle is returned at Rl+O in the usual
way.

The normal use of this is to prevent depression of the mouse buttons
having any effect while the pointer is outside the window, or to close
menus and other 'pop-up' devices automatically as the pointer moves
away from them.

The example program sets the flag 'ourwindow%' (which contains the
handle of our window) to -1 on this call so as to prevent mouse button
activity elsewhere. It is reset to the window handle by the next reason
code.

5 Pointer Entering Window
This reason code is complementary to reason code 4 - it is generated each
time the pointer enters the PWA part of the window. The window handle is
returned at Rl+O in the usual way. This call allows for windows which
appear automatically when the pointer enters a particular part of the
display.

Listing 13.1 uses this call to make the flag 'ourwindow%' valid again by
setting it to the window handle at Rl+O. This flag is used to determine
whether mouse buttons have an effect elsewhere in the program.

6 Mouse Buttons have Changed
This reason code is issued each time the mouse buttons change state. It
does not indicate which mouse buttons are actually being held down; only
that they have been pressed or released. The following parameters are
returned in the parameter block for this reason code:

170

The Window Manager

Offset
!O
!4
!8
!12
!16
!20

Parameter
Mouse X co-ordinate
Mouse Y co-ordinate
New state of mouse buttons
Window handle (or -1 if outside all windows)
Icon handle (or -1 if not on an icon)
Old state of mouse buttons

The format of the mouse state flags at !8 are as follows:

Bit Meaning
0 Right button pressed (adjust)
1 Middle button pressed (menu)
2 Left button pressed (select)
4 Dragging with right button
6 Dragging with left button
8 Single click of right button
10 Single click of left button

Listing 13.1 uses this call to identify when the middle (menu) button has
been pressed within its window causing the pop-up menu to appear
(PROCmouse, PROCsetupmenu).

7 User Dragging Window
This reason code is returned at the end of a drag sequence whose effect is
application-specific. Consult the Programmer's Reference Manual for
more information.

8 User Pressed a Key
This reason code is issued if the user presses a key when the pointer is
within one of the application's windows. The Window Manager attempts
to display text at the position of the text cursor (known as the 'caret')
whose position may be set with the pointer. This reason code is
accompanied by the following parameter block:

Offset Parameter
!O Window handle in which caret appears
!4 Icon handle (or -1 if no icon)
!8 Caret_X_offset (within PWA)
!12 Caret_ Y _offset (within PWA)
!16 Height of caret
!20 Position of carat within text string
!24 Code of key pressed

171

Archimedes Operating System

The entry of characters into windows is beyond the scope of this book and
the reader is advised to consult the Programmer's Reference Guide for
more information.

9 User Selected a Menu
This reason code is returned when the user has made a selection from an
active menu (which has been set up using SWI ''Wimp_CreateMenu"). The
parameter block contains the item numbers of the menu items selected,
with Rl +O containing the item from the first menu level, Rl +4 containing
the item number from the second menu level and so on up to a terminating
-1. See the section on menus later for more information.

Closing Down the Application Window
Having established the mechanisms for getting a window onto the screen
and running an application behind it, we need to be able to shut down an
application cleanly. This is achieved with the assistance of two SWis -
''Wimp_DeleteWindow" and "Wimp_CloseDown".

''Wimp_DeleteWindow" takes a window handle at Rl+O and removes that
window from the display. "Wimp_CloseDown" shuts down the entire
Window Manager and clears the display.

Window Manager Support for Menus
Besides providing overall control of windows, the Window Manager also
contains a number of routines which offload the more mundane aspects of
dealing with user selections from 'menus'. The idea behind menus, as we
saw earlier, is to minimise the scope for user error by predefining the valid
selections from the menu. Theos Window Manager supports multi-level
or 'hierarchical' menus, which allow complex sequences of selections to be
made from almost any number of menu levels. The user causes a menu to
appear by clicking on the middle mouse button: the application determines
which window the pointer is over at the time and the Window Manager
displays the appropriate menu and allows the user to make a selection. By
taking advantage of the Window Manager support for menus, application
programmers may be relieved of the burden of dealing with menu
selections and simply concern themselves with the effects of these selctions.
The results of selections are returned in a control block provided by
"Wimp_Poll" reason code nine.

172

The Window Manager

The Structure of Menus
A menu is described by the application to the Window Manager in a similar
way to that used for windows. In fact, menus are really just windows
whose contents are predefined - this predefinition allowing the Window
Manager to do most of the work in dealing with user selections.

A menu consists of a list of entries displayed as a column of lines of text
within a window. The window has none of the control buttons and scroll
bars associated with normal windows, but instead each of the menu entries
may have three graphical effects associated with it:

The first is that it may be 'dimmed', a shading effect which indicates that it
is not valid to select the entry.

The second is a 'tick' or check mark which indicates that the entry is already
selected or is a default value.

The third is an 'arrow' facing off the right-hand side of an entry which
indicates the presence of a sub-menu or window. Moving the mouse to the
right over one of these arrows causes the sub-menu to appear to the right
of the first menu, and this process may continue through more levels of sub­
menu ad nauseam. The Window Manager attempts to be intelligent about
the positioning of menus so, if the sub-menu is selected from a menu which
is already near the right-hand edge of the screen it will be displaced left to
ensure it is completely visible.

Programming Menus
To prepare the Window Manager for the handling of menus it is necessary
to call the swr "Wimp_CreateMenu" once for each menu in the
application. This call takes a pointer to the menu's control block and a co­
ordinate pair which specifies where it should initially appear on the
display. The program should then return to the main polling loop to await
the issue of reason code nine which indicates that a selection has actually
been made.

SWI Wimp_CreateMenu (SWI &40004)
Create a New Menu Structure
This call advises the Window Manager that a menu structure should be
installed in its tables. On entry, RO must either contain -1 (in which case all
menus are closed) or a pointer to the menu definition block for the new

173

Archimedes Operating System

menu. In the latter case (R2,R3) give the co-ordinates of the top left-hand
comer of the menu when it is displayed.

The menu control block consists of a series of entries, each of which is in the
same format. The first defines the top level menu and its entries, with
pointers leading the way to the sub-menu definitions and so on. The
structure of the menu control block is as follows:

Offset
!O
?12
?13
?14
?15
!16
!20
!24
!28

Contents
Menu title string terminated by zero
Menu title foreground colour
Menu title background colour
Work area foreground colour
Work area background colour
Width of sub-menus (pixels)
Height of sub-menus (pixels)
Separation between menu entries (pixels)
Menu entries start here

The menu entries consist of 24-byte blocks which contain the names and
flags for each entry. Their format is as follows:

Offset Contents
!O Flags:

Bit 0 - Set means 'tick' the entry
Bit 1 - Set means follow this entry with a

dotted divider
Bit 2 - Set means this entry may be overwritten by user
Bit 7 - Set means this is the last item in the menu

!4 Pointer to sub-menu or handle of sub-window or -1
(for neither)

!8 Icon flags
!12 Text of entry terminated by zero

(11 characters maximum)

Where an entry has a sub-menu, the presence of a valid pointer or window
handle at offset !4 causes the arrow to appear automatically. For sub­
menus, the offset of the sub-menu in the menu control block should be
inserted here; for sub-windows, the window handle of the appropriate
window should be inserted.

The structure of sub-menu entries is just the same as that for the first
menu, with all the information indicated above repeated as necessary.

174

The Window Manager

Menus in the WimpMaze Example
The example program at the end of this chapter makes limited use of the
menu facility by providing a menu which permits the foreground and
background colours of the display to be changed. This is set up when the
middle button is pressed (PROCmouse) by the procedure PROCsetupmenu.
Subsequently, the Wimp_Poll reason code is issued and PROChandlemenu is
called to extract the parameters returned by the reason code and change
the display colours accordingly.

Note: do not be discouraged by the length of PROCsetupmenu. It is rather
long-winded since each menu entry has to be individually defined, but the
menu system itself is not at all complicated. When setting up menus, you
may find it easiest to type a 'dummy' entry and duplicate it several times
(eg, by using the copy facility in the Arm BASIC Editor).

The WIMP routines described previously are sufficient to carry out most
window based operations. The WIMP Manager provides several more
advanced calls to help in manipulating windows in specialised ways. A
complete list of the facilities provided is given below.

SWI Routine SWI Routine
Number Name Number Name
&400CO Wimp_Initialise &400Cl Wimp_CreateWindow
&400C2 Wimp_Createlcon &400C3 Wimp_DeleteWindow
&400C4 Wimp_Deletelcon &400C5 Wimp_OpenWindow
&400C6 Wimp_CloseWindow &400C7 Wimp_Poll
&400C8 Wimp_RedrawWindow &400C9 Wimp_UpdateWindow
&400CA Wimp_GetRectangle &400CB Wimp_GetWindowState
&400CC Wimp_GetWindowlnfo &400CD Wimp_SetlconState
&400CE Wimp_GetlconState &400CF Wimp_GetPointerlnfo
&400DO Wimp_DragBox &400Dl Wimp_ForceRedraw
&400D2 Wimp_SetCaretPosition &400D3 Wimp_GetCaretPosition
&400D4 Wimp_CreateMenu &400D5 Wimp_DecodeMenu
&400D6 Wimp_Whichlcon &400D7 Wimp_SetExtent
&400D8 Wimp_SetPointerShape &400D9 Wimp_OpenTemplate
&400DA Wimp_CloseTemplate &400DB Wimp_LoadTemplate
&400DC Wimp_ProcessKey &400DD Wimp_CloseDown

To assist in the design and creation of WIMP windows, Acorn has produced
a window designer. This allows the various parameters defining a window
to be easily selected and varied. A window definition file, called a template,
is then produced by the designer. The WIMP manager provides two SWI calls
to allow this template file to be loaded into the WIMP system. The window

175

Archimedes Operating System

definitions held within it are then available to the WIMP as if they had been
created using WIMP _CreateWindow.

10 REM >List13/1
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 ON ERROR PROCerror:END
70
80 REM Select mode 12 and set up the palette.
90

100 MODE 12
110 VDU 19,15,16,16,16,160
120 backcol%=3
130 forcol%=4
140 VDU 19,8,backcol%
150 VDU 19,9,forcol%
160
170 REM Initialise the Wimp.
180
190 SYS "Wimp_Initialise" TO version%
200
210 REM Set up maze variables.
220
230 side%=20
240 area%=side%*side%
250 DIM a% area%,b% area%*2,block% 255
260
270 REM Reserve space for menus and enter
280 REM the main loop.
290
300 DIM menu% 1023
310
320 REPEAT
330
340 REM Create a new maze. Each cell will be
350 REM 100 by 100 pixels on the screen.
360
370 PROCnewmaze
380 scale%=100
390
400 REM We'll start in the bottom left corner.
410 weareX%=0
420 weareY%=0
430 ?a%=?a% OR 16
440
450 REM Define and open our window.
460
470 ourwindow%=FNcreatemain
480 PROCopenwindow (ourwindow%)
490
500 REM Set up flags to indicate if user has solved

176

510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030

AOS-L

The Window Manager

REM maze or left the program.

solved%=0
solvedwhendrawn%=0
exit%=0
exitwhendrawn%=0

REM The polling loop - polls the Wimp until
REM maze is solved or game is quit.

REPEAT
SYS "Wimp Poll",,block% TO reason%,info%
CASE reason% OF
WHEN O:PROCdothatthing :REM Null reason code
WHEN l:PROCredraw(info%)
WHEN 2:SYS "Wimp OpenWindow",,info%
WHEN 3:SYS "Wimp-CloseWindow",,info%:exitwhendrawn%=TRUE
WHEN 4:ourwindow%=-l :REM Pointer leaving
WHEN 5:ourwindow%=info%!0 :REM Pointer entering
WHEN 6:PROCmouse(info%) :REM Mouse buttons
WHEN 7 :REM User Drag
WHEN 8 :REM Key Pressed
WHEN 9:PROChandlemenu(info%) :REM Menu Select
WHEN 10 :REM Scroll Request
OTHERWISE
ENDCASE
UNTIL solved% OR exit%

REM Delete the old window and repeat if solved.
REM Otherwise, exit tidily.

PROCdeletewindow(handle%)
UNTIL exit%
PROCfinish
END

DEF FNcreatemain
block%!0=200 :REM Window, min X
block%!4=200 :REM Window, min Y
block%!8=1000 :REM Window, max X
block%!12=700 :REM Window, max Y
block%!16=-20 :REM X scroll offset
block%!20=480 :REM Y scroll offset
block%!24=-1 :REM Open at the top
block%!28=%1111 :REM Flags
block%?32=7 :REM Title fore' colour
block%?33=0 :REM Title back' colour
block%?34=9 :REM Work fore' colour
block%?35=8 :REM Work back' colour
block%?36=5 :REM Scroll outer colour
block%?37=6 :REM Scroll inner colour
block%?38=1 :REM Highlighted title colour
block%?39=0 :REM Reserved

177

Archimedes Operating System

1040 block%!40=-20 :REM Work area extent, min X
1050 block%!44=-20 :REM Work area extent, min Y
1060 block%!48=side%*scale%+20 :REM Work area extent, max X
1070 block%!52=side%*scale%+20 :REM Work area extent, max Y
1080 block%!56=%00000111000000000000000000011001 :REM Flags
1090 block%!60=0 :REM Work area button type
1100 block%!64=0 :REM Sprite control pointer
1110 block%!68=0 :REM Reserved
1120 $ (block%+72) ="My Window." :REM Window title
1130 block%!84=0 :REM Number of icons
1140
1150 REM Create the window and return its handle.
1160
1170 SYS "Wimp CreateWindow",,block% TO handle%
1180 =handle% -
1190
1200 REM Open a window: set up block% with the
1210 REM handle, read information about the
1220 REM window and use this information to open it.
1230
1240 DEF PROCopenwindow(handle%)
1250 block%!0=handle%
1260 SYS "Wimp GetWindowState",,block%
1270 SYS "Wimp-OpenWindow",,block%
1280 ENDPROC -
1290
1300 REM Close a window.
1310
1320 DEF PROCdeletewindow(handle%)
1330 block%!0=handle%
1340 SYS "Wimp DeleteWindow",,block%
1350 ENDPROC -
1360
1370 REM Keep redrawing the maze until there is
1380 REM nothing else to redraw.
1390
1400 DEF PROCredraw(block%)
1410 SYS "Wimp RedrawWindow",,block% TO flag%
1420 WHILE flag%
1430
1440 REM Calculate the edges of the graphics window.
1450
1460 rectminX=block%!28
1470 rectminY=block%!32
1480 rectmaxX=block%!36
1490 rectmaxY=block%!40
1500
1510 REM Calculate the size of the graphics window.
1520
1530 sizeX=rectmaxX-rectminX
1540 sizeY=rectmaxY-rectminY
1550
1560 REM Calculate window position on PWA.

178

The Window Manager

1570
1580 vertminX=block%!20+block%!28-block%!4
1590 vertmaxY=block%!24+block%!40-block%!16
1600 vertmaxX=vertminX+sizeX
1610 vertminY=vertmaxY-sizeY
1620
1630 REM Calculate window position on work area.
1640
1650 offX=rectminX-vertminX
1660 offY=rectminY-vertminY
1670
1680 REM Redraw each maze cell within the window.
1690
1700 FOR I%=(vertminX DIV scale%) TO (vertmaxX DIV scale%)
1710 FOR J%=(vertminY DIV scale%) TO (vertmaxY DIV scale%)
1720 PROCdrawcell(I%,J%)
1730 NEXT
1740 NEXT
1750
1760 REM Check if there is anything else to draw.
1770
1780 SYS "Wimp_GetRectangle",,block% TO flag%
1790 ENDWHILE
18 0 0 ENDPROC
1810
1820 REM Draw a maze cell if co-ordinates are within maze.
1830
1840 DEF PROCdrawcell(X%,Y%)
1850 LOCAL C%
1860 IF X% >=0 AND X%<side% AND Y%>=0 AND Y%<side% THEN
1870 C%=?(a%+X%+side%*Y%)
1880 MOVE X%*scale%+offX,Y%*scale%+offY
1890
1900 REM Draw left, top, right and bottom sides.
1910
1920 PLOT 1+ ((C% AND 1) =l), O, (scale%-l)
1930 PLOT 1+ ((C% AND 8) =8), (scale%-l), 0
1940 PLOT l+((C% AND 4)=4),0,-(scale%-1)
1950 PLOT l+((C% AND 2)=2),-(scale%-l),0
1960
1970 REM Move to the centre and draw the circle.
1980
1990 MOVE (X%+.5) *scale%+offX, (Y%+.5) *scale%+offY
2000 IF (C% AND 16)=16 THEN
2010 PLOT 153,scale%/3,0
2020 ELSE
2030 PLOT 155,scale%/ 3,0
2040 ENDIF
2050 ENDIF
2060 ENDPROC
2070
2080 DEF PROCmouse(block%)
2090 IF (block%?8 AND 2)=2 AND (block%!12)=handle% THEN

179

Archimedes Operating System

2100 PROCsetupmenu
2110 SYS "Wimp CreateMenu",,menu%,block%!0,block%!4
2120 ENDIF -
2130 ENDPROC
2140
2150 REM Set up colour sub-menu.
2160
2170 DEF PROCsetupmenu
2180 $menu%="Colours"+CHR$0
2190 menu%?12=4 :REM Colours
2200 menu%?13=3
2210 menu%?14=6
2220 menu%?15=2
2230 menu%!16=200 :REM Width
2240 menu%!20=32 :REM Height of entries
2250 menu%!24=16 :REM Entry gap height
2260 menu%!28=0 :REM No flags
2270 menu%!32=menu%+80 :REM Pointer to sub menu
2280 menu%!36=%000000000000000000111001 :REM Menu flags
2290 menu%?39=forcol%<<4 OR (forcol% EOR %111) :REM Icon cols
2300 $(menu%+40)="Foreground"+CHR$0 :REM Entry text
2310 menu%!52=&80 :REM Flag as last entry
2320 menu%!56=menu%+300
2330 menu%!60=%000000000000000000111001
2340 menu%?63=backcol%<<4 OR (backcol% EOR %111)
2350 $(menu%+64)="Background"+CHR$0
2360 menu%!80=0 :REM Header (as above)
2370 menu%?92=4
2380 menu%?93=3
2390 menu%?94=6
2400 menu%?95=15
2410 menu%!96=128
2420 menu%!100=40
2430 menu%!104=0
2440 mb%=menu%+108
2450 mb%!0=0
2460 IF forcol%=%000 THEN mb%?0=1
2470 mb%!4=-l :REM No sub-menu
2480 mb%!8=%00000111000000000000000000111001 :REM Flags
2490 IF backcol%=%000 THEN mb%!8=mb%!8 OR 1<<22
2500 $ (mb%+12) ="Black" :REM Entry text
2510 mb%+=24 :REM Set mb% - next entry
2520 mb% ! O=O
2530 IF forcol%=%001 THEN mb%?0=1
2540 mb% ! 4=- 1
2550 mb%!8=%00010110000000000000000000111001
2560 IF backcol%=%001 THEN mb%!8=mb%!8 OR 1<<22
2570 $(mb%+12)="Red"
2580 mb%+=24
2590 mb% ! O=O
2600 IF forcol%=%010 THEN mb%?0=1
2610 mb%!4=-l
2620 mb%!8=%00100101000000000000000000111001

180

The Window Manager

2630 IF backcol%=%010 THEN mb%!8=mb%!8 OR 1<<22
2640 $(mb%+12)="Green"
2650 mb%+=24
2660 mb% ! O=O
2670 IF forcol%=%011 THEN mb%?0=1
2680 mb%!4=-1
2690 mb%!8=%00110100000000000000000000111001
2700 IF backcol%=%011 THEN mb%!8=mb%!8 OR 1<<22
2710 $(mb%+12)="Yellow"
2720 mb%+=24
2730 mb% ! O=O
2740 IF forcol%=%100 THEN mb%?0=1
2750 mb%!4=-1
2760 mb%!8=%01000011000000000000000000111001
2770 IF backcol%=%100 THEN mb%!8=mb%!8 OR 1<<22
2780 $(mb%+12)="Blue"
2790 mb%+=24
2800 mb% ! 0=0
2810 IF forcol%=%101 THEN mb%?0=1
2820 mb%!4=-1
2830 mb%!8=%01010010000000000000000000111001
2840 IF backcol%=%101 THEN mb%!8=mb%!8 OR 1<<22
2850 $(mb%+12)="Magenta"
2860 mb%+=24
2870 mb%!0=0
2880 IF forco1%=%110 THEN mb%?0=1
2890 mb% ! 4=-1
2900 mb%!8=%01100001000000000000000000111001
2910 IF backcol%=%110 THEN mb%!8=mb%!8 OR 1<<22
2920 $ (mb%+12) ="Cyan"
2930 mb%+=24
2940 mb%!0=&80
2950 IF forco1%=%111 THEN mb%?0=&81
2960 mb% ! 4=-1
2970 mb%!8=%01110000000000000000000000111001
2980 IF backcol%=%111 THEN mb%!8=mb%!8 OR 1<<22
2990 $(mb%+12)="White"
3000 mb%+=24
3010 rnenu%!300=0 :REM Sub-menu for background
3020 rnenu%?312=4
3030 rnenu%?313=3
3040 rnenu%?314=6
3050 rnenu%?315=15
3060 rnenu%!316=128
3070 rnenu%!320=40
3080 rnenu%!324=0
3090 mb%=rnenu%+328
3100 mb%!0=0 :REM All entries as before
3110 IF backcol%=%000 THEN mb%?0=1
3120 mb% ! 4=-1
3130 rnb%!8=%00000111000000000000000000111001
3140 IF forcol%=%000 THEN mb%!8=mb%!8 OR 1<<22
3150 $(mb%+12)="Black"

181

Archimedes Operating System

3160 mb%+=24
3170 mb% ! O=O
3180 IF backcol%=%001 THEN mb%?0=1
3190 mb% ! 4=-1
3200 mb%!8=%00010110000000000000000000111001
3210 IF forcol%=%001 THEN mb%!8=mb%!8 OR 1<<22
3220 $(mb%+12)="Red"
3230 mb%+=24
3240 mb% ! 0=0
3250 IF backcol%=%010 THEN mb%?0=1
3260 mb% ! 4=-1
3270 mb%!8=%00100101000000000000000000111001
3280 IF forcol%=%010 THEN mb%!8=mb%!8 OR 1<<22
3290 $(mb%+12)="Green"
3300 mb%+=24
3310 mb% ! O=O
3320 IF backcol%=%011 THEN mb%?0=1
3330 mb% ! 4=-1
3340 mb%!8=%00110100000000000000000000111001
3350 IF forcol%=%011 THEN mb%!8=mb%!8 OR 1<<22
3360 $ (mb%+12) ="Yellow"
3370 mb%+=24
3380 mb% ! O=O
3390 IF backcol%=%100 THEN mb%?0=1
3400 mb% ! 4=-1
3410 mb%!8=%01000011000000000000000000111001
3420 IF forcol%=%100 THEN mb%!8=mb%!8 OR 1<<22
3430 $(mb%+12)="Blue"
3440 mb%+=24
3450 mb% ! O=O
3460 IF backcol%=%101 THEN mb%?0=1
3470 mb%!4=-l
3480 mb%!8=%01010010000000000000000000111001
3490 IF forcol%=%101 THEN mb%!8=mb%!8 OR 1<<22
3500 $ (mb%+12) ="Magenta"
3510 mb%+=24
3520 mb% ! O=O
3530 IF backcol%=%110 THEN mb%?0=1
3540 mb%!4=-l
3550 mb%!8=%01100001000000000000000000111001
3560 IF forcol%=%110 THEN mb%!8=mb%!8 OR 1<<22
3570 $(mb%+12)="Cyan"
3580 mb%+=24
3590 mb% ! 0=&80
3600 IF backcol%=%111 THEN mb%?0=&81
3610 mb% ! 4=-1
3620 mb%!8=%01110000000000000000000000111001
3630 IF forco1%=%111 THEN mb%!8=mb%!8 OR 1<<22
3640 $(mb%+12)="White"
3650 mb%+=24
3660 ENDPROC
3670
3680 DEF PROChandlemenu(block%)

182

The Window Manager

3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960

IF block%!0<>-l AND block%!4<>-1 THEN
VDU 19,9-(block%!0),block%!4,0,0,0
IF block%!0=1 backcol%=block%!4 ELSE forcol%=block%!4
ENDIF
ENDPROC

REM PROCdothatthing is called when the Wimp is idle.

DEF PROCdothatthing
IF solvedwhendrawn% OR exitwhendrawn% THEN
IF solvedwhendrawn% solved%=TRUE ELSE exit%=TRUE
ELSE
IF weareX%=side%-l AND weareY%=side%-l THEN

REM The maze has been solved so set appropriate
REM flags, delete window etc.

solvedwhendrawn%=TRUE
block%!0=handle%
PROCdeletewindow(ourwindow%)
scale%=(scale% DIV 5) AND &FFC
ourwindow%=FNcreatemain
PROCopenwindow(ourwindow%)
ELSE

REM Check pointer, check if a button is pressed
REM and pointer is inside window.

3970 MOUSE areatX%,areatY%,buttons
3980 IF ourwindow%=handle% AND buttons<>O THEN
3990
4000
4010
4020
4030

REM Examine window state, determine the
REM relationship between window and work area
REM and find which maze cell the pointer is in.

4040 block%!0=handle%
4050 SYS "Wimp GetWindowState",,block%
4060 offX=block%!4-block%!20
4070 offY=block%!16-block%!24
4080 areatX%=(areatX%-offX)DIV scale%
4090 areatY%=(areatY%-offY)DIV scale%
4100 IF (weareX%<>areatX% OR weareY%<>areatY%) AND
areatX%>=0 AND areatX%<side% ANDareatY%>=0 AND areatY%<side% THEN
4110 :REM If the mouse can move the new cell, do so
4120 IF weareX%=areatX%+1 AND weareY%=areatY% AND (?(a%+weareX%
+side%*weareY%)ANDl) PROCmousemove
4130 IF weareX%=areatX% AND weareY%=areatY%+1 AND (?(a%+weareX%
+side%*weareY%)AND2) PROCmousemove
4140 IF weareX%=areatX%-l AND weareY%=areatY% AND (?(a%+weareX%
+side%*weareY%)AND4)=4 PROCmousemove
4150 IF weareX%=areatX% AND weareY%=areatY%-l AND (?(a%+ weareX%
+side%*weareY%)AND8)=8 PROCmousemove
4160 ENDIF

183

Archimedes Operating System

4170 ENDIF
4180 ENDIF
4190 ENDIF
4200 ENDPROC
4210
4220 REM Move the pointer when possible.
4230
4240 DEF PROCmousemove
4250 IF (?(a%+areatX%+side%*areatY%)AND 16)=16 THEN
4260
4270 REM Retrace step and update screen.
4280
4290 ?(a%+weareX%+side%*weareY%)=?(a%+weareX%+side%*weareY%) AND
&EF
4300 SYS "Wimp ForceRedraw",handle%,weareX%*scale%+4,
weareY%*scale%+4, (weareX%+1) weale%-4, (weareY%+1)*scale%-4
4310 ELSE
4320
4330 REM Move to a new cell and update screen.
4340
4350 ?(a%+areatX%+side%*areatY%)=?(a%+areatX%+side%*areatY%) OR
&10
4360 SYS "Wimp ForceRedraw",handle%,areatX%*scale%+4,
areatY%*scale%+4, (areatX%+1)*scale%-4, (areatY%+1)*scale%-4
4370 ENDIF
4380 weareX%=areatX%
4390 weareY%=areatY%
4400 ENDPROC
4410
4420 REM The maze generator.
4430
4440 DEF PROCnewmaze
4450 LOCAL P%,X%,Y%,L%
4460 FORI%=0TOarea%-1STEP4:a%!I%=0:NEXT
4470 P%=0
4480 PROCnewcell(RND(side%)-1,RND(side%)-1)
4490 REPEAT
4500 IF P%>3 AND RND(l00)<>1 L%=RND(3)+P%-4 ELSE L%=RND(P%)-1
4510 X%=?(b%+L%) :Y%=?(b%+L%+area%)
4520 P%=P%-1
4530 ?(b%+L%)=?(b%+P%) :?(b%+L%+area%)=?(b%+P%+area%)
4540 Flag%=0
4550 REPEAT
4560 CASE RND(4) OF
4570 WHEN l:IF X%<>0 IF (?(a%+X%-l+Y%*side%) AND &80)<>0
?(a%+X%+Y%*side%)=?(a%+X%+Y%*side% OR l:?(a%+X%-l+Y% *side%)
=? (a%+X%-l+Y%*side.%) OR 4 :Flag%=-1
4580 WHEN 2:IF Y%<>0 IF (?(a%+X%+(Y%-l)*side%) AND &80)<>0
?(a%+X%+Y%*side%)=?(a%+X%+Y%*side OR 2:?(a%+X%+(Y%-l)*side%)
=?(a%+X%+(Y%-l)*side%) OR 8:Flag%=-1
4590 WHEN 3:IF X%<>side%-1 IF (?(a%+X%+1+Y%*side%) AND &80)<>0
?(a%+X%+Y%*side%)=?(a%+X%+Y%*side%)0R 4:?(a%+X%+l+Y%*side%)
=?(a%+X%+l+Y%*side%) OR l:Flag%=-l

184

The Window Manager

4600 WHEN 4:IF Y%<>side%-l IF (?(a%+X%+(Y%+l)*side%) AND &80)<>0
?(a%+X%+Y%*side%)=?(a%+X%+Y%*side OR8:?(a%+X%+(Y%+l)*side%)
=?(a%+X%+(Y%+l)*side%) OR 2:Flag%=-l
4610 ENDCASE
4620 UNTIL Flag%
4630 PROCnewcell(X%,Y%)
4640 UNTIL P%=0
4650 X%=0:Y%=0:?(a%+X%+Y%*side%)=?(a%+X%+Y%*side%)0Rl
4660 X%=side%-l:Y%=side%-l:?(a%+X%+Y%*side%)=?(a%+X%+Y%*side%)0R4
4670 ENDPROC
4680
4690 DEF PROCnewcell(X%,Y%)
4700 ?(a%+X%+Y%*side%)=?(a%+X%+Y%*side%) OR &CO
4710 IF X%>0 IF (?(a%+X%-l+Y%*side%) AND &40)=0 PROClistadd(X%­
l, Y%)
4720 IF X%<side%-l IF (?(a%+X%+l+Y%*side%) AND &40)=0
PROClistadd(X%+1,Y%)
4730 IF Y%>0 IF (?(a%+X%+(Y%-l)*side%) AND &40)=0
PROClistadd(X%,Y%-l)
4740 IF Y%<side%-l IF (?(a%+X%+(Y%+l)*side%) AND &40)=0
PROClistadd(X%,Y%+
4750 ENDPROC
4760
4770 DEF PROClistadd(I%,J%)
4780 ?(a%+I%+J%*side%)=?(a%+I%+J%*side%)OR &40
4790 ?(b%+P%)=I%
4800 ?(b%+P%+area%)=J%
4810 P%=P%+1
4820 ENDPROC
4830
4840 REM The error handler, which uses PROCfinish to be tidy.
4850
4860 DEF PROCerror
4870 PROCfinish
4880 PRINT REPORT$; .. at line .. ;ERL
4 8 90 ENDPROC
4900
4910 REM Shut down the Wimp system tidily.
4920
4930 DEF PROCfinish
4940 SYS "Wimp CloseDown"
4950 *FX 4 -
4960 *POINTER 0
4970 VDU 4,26,20,12
4980 ENDPROC

Listing 13.1. WimpMaze.

185

14 ·The Font Manager

The 'Font Manager' and its twin - the 'Font Painter' - allow characters to
be displayed in a number of fonts, anti-aliased, scaled to any size,
proportionally spaced and with optional position justification. The fonts
are stored in two sets of files (known as the 'metric' and 'pixel' files) which
define the shape of the font and contain pixel bit-maps of the font
characters. By calling the Font Manager, an application may request a
specified font in a given size and then display (optionally coloured) text in a
chosen screen mode.

The Font Manager deals with the business of reading font definitions into
memory (a process known as 'caching') and scaling the fonts to the
required size as it does so. An area of memory may be set aside for the Font
Manager's cache using the configuration option FontSize, and this limits
the number of fonts which may be cached at any moment. If insufficient
space is available in memory the Font Manager will delete some of the
existing fonts to make room for fresh ones. Thus the application does not
have to deal with the memory management issues.

The Font Painter takes the cached font definitions and paints them onto the
display either by means of swr calls or through the normal VDU channel for
printing text. This latter technique is achieved by intercepting the VDU
extension vector VDUXV.

So that the Font Manager and the Font Painter can communicate with
each other effectively there is a fixed relationship between the scales each
use. The Font Manager works in 1I 1000ths of a 'point', a typographer's
measure which is roughly 1

/ 72nd of an inch. Thus the Font Manager's basic
units are 1I 72000ths of an inch. The Font Painter, on the other hand, works
with screen units (pixels) which it assumes to be 1I 180th of an inch, so there
are nominally 90 pixels per inch in mode zero (which has half the
theoretical maximum resolution).

Dealing with the Font Manager
The Font Manager handles the movement and scaling of font files which
are stored on the selected filing system. The OS variable Font$Prefix

186

The Font Manager

specifies where the font files are to be found. Font files are stored in sub­
directories of a directory whose name is the name of the font, so a full
pathname is derived by using the contents of Font$Prefix followed by the
name of the font, eg, after entering:

*SET Font$Prefix $.Welcome.Fonts

the files for the font named Trinity will henceforth be found in:

$.Welcome.Fonts.Trinity

To allow the Font Manager to perform caching and de-caching auto­
matically it is necessary to follow this procedure:

1. Request the font using swr "Font_FindFont" by name, specifying
its point size and screen resolution. A font 'handle' is returned by
the Font Manager.

2. Use this handle in any subsequent requests to the Font Manager.

3. Advise the Font Manager that the font is no longer needed by
calling swr "Font_LoseFont" with the handle.

When an application requests a font, the Font Manager first checks the
cache to see if the font is already available in the specified size. If so, the
handle of the font is returned immediately; otherwise, the Font Manager
loads the font information from the filing system (evicting other fonts from
the cache if necessary) and returns a new handle to the application.

An Example
Listing 14.1 is a full listing of an example program which uses the Font
Manager. Bearing in mind the sequence described above, here is a
summary of how the program works.

First, the swr "Font_ CacheAddr" is issued to determine which version of
the Font Manager is being used and to return the total size of the font
cache and the amount already used. This call is made with RO containing
zero and returns with the version number*lOO in RO, the amount of cache
used in Rl and the total cache size in R2. The following line of BASIC
achieves this:

SYS "Font_CacheAddr" TO version%,cacheused%,cachesize%

Next, three different combinations of font and size are requested from the
Font Manager using swr "Font_FindFont". This takes a pointer to the
font name in RI, the width in points*16 in R2, the height in points*16 in R3

187

Archimedes Operating System

and, optionally, the X and Y resolutions of the display in pixels per inch in
R4 and RS (if zero is supplied then the default is used). The Font Manager
returns a handle to the font in RO. The following line of Basic gets the
handle in Trinity% for a 48 point square version of the supplied font
'Trinity Medium":

SYS "Font_FindFont",,"Trinity.Medium",48*16,48*16 TO Trinity

The palette needs to be set up to anti-alias the fonts correctly in the selected
mode (mode 12 in the example). Fonts are inherently anti-aliased using 16
colours, so in modes where this number of colours is not spare, the number
of anti-aliasing levels must be reduced. This is achieved by issuing SWI
"Font_SetPalette" which takes as parameters the background logical
colour in Rl, the foreground logical colour in R2, the foreground colour
offset (see below) in R3, the physical background colour in R4 and the 'last'
physical foreground colour in RS.

Consider the following line from the example listing 14.1:

SYS "Font_SetPalette",,0,l,6,&00000000,&FOFOFOOO

The last two figures indicate the start and end physical colours. These are
in the form &BBGGRROO where BB, GG and RR are the blue, green and red
intensities respectively. So the line above will result in a colour scale from
black (&00000000) to white (&FOFOFOOO). The parameters 0,1,6 determine
which logical colours are used for this colour scale. The 0 indicates that
logical colour 0 is to be used for the background colour, the 1 defines the
colour scale as starting at logical colour 1 and the 6 means that 6 colours
(excluding the background colour) are to be used in the scale. Hence, logical
colours 0 to 7 are redefined to form an ascending black-to-white colour
scale.

The next line in the example performs a similar function, setting logical
colours 7 to 15 to form a scale from white to dark-green. Note that the
example listing 14.1 uses the physical colour white to terminate one colour
scale and begin another. By sharing colours in this way, a larger variety of
shades may be squeezed into a limited logical colour range.

Getting Text on the Display
Having identified to the Font Manager those fonts which will need caching
and having set up the palette for anti-aliasing, we may now proceed to
actually display text.

The first stage is to identify the colours in which we wish to display the
chosen font using the SWI "Font_SetFontColours". This SWI takes a font

188

The Font Manager

handle in RO (or 0 for the 'current' or most recently used font), a back­
ground logical colour in RI, a foreground logical colour in R2 and a
foreground colour offset in R3 (as above). This call returns no results, but
simply establishes the colours that will subsequently be used. The following
line is used in the example listing:

SYS "Font_SetFontColours",Trinity%,7,8,7

The second stage is to ask the Font Manager to be prepared to print in the
font we intend to use. This is achieved using the SWI "Font_SetFont" which
simply takes the font handle in RO and returns no results, eg:

SYS "Font_SetFont",Trinity%

Finally, we can actually pass to the Font Painter the text to be displayed,
accompanied by a 'plot type' indicating the way in which it should appear.
The swr "Font_Paint" achieves this, taking a pointer to the string to be
displayed in RI, the plot type in R2 (see below) and the X and Y co­
ordinates where the text is to start in R3 and R4 respectively.

It is important to note that the pair of co-ordinates specifying the position
where the text will start refer to the bottom left-hand comer of the box
that one may imagine enclosing the text, rather than the top left-hand
comer as is the case when printing text following a VDU 5.

Plot Type Options
The plot type parameter contains four flags whose meanings are as
follows:

Bit 0: Set- Justify Text
When this bit is set, the Font Painter will attempt to fully justify the text
string. To do this, you must have supplied the co-ordinates of the right­
hand limit to which justification should extend. Only the X-axis part of this
co-ordinate is really relevant since the Y-axis value must be the same as
that of the text starting position if you want horizontal text! The co­
ordinate is supplied by issuing a graphics MOVE command before issuing the
swr, so for example:

MOVK 1280, 732
SYS "Font_Paint",,"This will be justified",%10001,0,732

will produce the text string "This will be justified" with the lower left-hand
corner of the opening 'T' at (0,732) and the lower right-hand corner of the
closing 'd' at (1280,732).

189

Archimedes Operating System

Bit 1: Set - Pre-draw Rubout Box
This option tells the Font Painter to 'rub out' a box surrounding the text by
filling it with the background colour before the text is painted onto the
screen. To do this, two pairs of co-ordinates must have been supplied by
issuing MOVE commands: the first to specify the bottom left-hand comer of
the box and the second the top right-hand comer. For example:

MOVE 0,716:MOVE 1280,772
SYS "Font_Paint",,"A rub out box",Trinity%,%10010,0,732

If this operation is to be combined with justification the box co-ordinates
must be issued first, followed by the justification limit co-ordinate. For
example:

MOVE 0,716:MOVE 1280,772 :REM rub out box
MOVE 1280,732
SYS "Font_Paint",,"This will be justified",%10011,0,732

Bit 2: Set -Absolute Co-ordinates Supplied
This bit should allow co-ordinates to be specified relative to the cursor
position or absolutely (when set). OS vl.20 ignores the state of this bit and
always treats the co-ordinates as absolute.

Bit 3: Not used

Bit 4: OS Co-ordinates/Font Painter Co-ordinates
This bit allows the co-ordinates of the text display position to be set either
in OS units (ie, within the theoretical display limits of 1280,1024) or in Font
Painter co-ordinates with units of 1I 72000ths of an inch. The application of
the latter form is limited, so it is suggested you always set this bit and use
OS co-ordinates (as we have).

Conversions Between the Co-ordinate Systems
Two swrs are provided to convert between Font Painter co-ordinates in
1I 72000ths of an inch and OS VDU driver co-ordinates. These SWIS simply take
an X,Y co-ordinate pair in Rl,R2 and return its converted form in Rl,R2.

SWI Font_ConverttoOS (SWI &40088)
Convert Font Painter to OS
This SWI converts a pair of Font Painter co-ordinates in units of 1 I 72000th
inch to OS co-ordinates. On entry, the X,Y pair is supplied in Rl,R2 with the
converted result being returned in the same registers.

190

The Font Manager

SWI Font_Converttopoints (SWI &40089)
Convert OS to Font Painter
This SWI converts a pair of os co-ordinates in screen units to Font Painter
co-ordinates in 1I 72000th inch units. On entry, the X,Y pair is supplied in
Rl,R2 with the converted result being returned in the same registers.

Size Calculations for Characters and Strings
The Font Manager provides several sw1s to allow detailed information
about the currently selected font to be examined. These are documented
below:

SWI Font_ReadDfn(SWI &40083)
Read Font Definition
This call returns a set of registers containing information about the font
whose handle is supplied. On entry RO should contain a font handle and Rl
should point to a buffer large enough to hold the font name (<= 12 bytes).
The results are returned in registers as follows:

Register Information
Rl Still points to buffer, which now contains font name
R2 Width of font *16
R3 Height of font *16
R4 Width resolution in pixels per inch
RS Height resolution in pixels per inch
R6 Number of other users of font
R7 Number of other accesses since this font was last used

SWI Font_Readlnfo (SWI &40084)
Read Character Information
This call returns the co-ordinates of a box which is just large enough to
accommodate any character in the font, useful for deciding how large a rub
out box to define. On entry, RO must contain the font handle, with the co­
ordinates returned as follows:

Register
Rl
R2
R3
R4

Information
X_min (OS co-ordinates, inclusive)
Y _min (OS co-ordinates, inclusive)
X_max (os co-ordinates, exclusive)
Y_max (os co-ordinates, exclusive)

191

Archimedes Operating System

SWI Font_StringWidth (SWI &40085)
Calculate String Width in Current Font
This call performs a number of calculations on a text string to determine
how much space it will occupy.

On entry Rl must point to the string, R2 and R3 specify the maximum
offsets in Font Manager co-ordinates which the string is allowed to occupy
(see below), R4 contains the character at which the string may be split if it
will not fit entirely and RS contains the positional index of the last
character allowed in the calculation.

The results returned indicate where the cursor would be after the string
was printed as (X,Y) in R2 and R3, the number of occurrences of the
specified split character in R4 and the positional index of the point at which
the calculation terminated (according to the character criteria supplied).

By judicious use of these parameters it is possible to determine where to
split text lines for wordprocessor formatting (by setting R4 to ASCII 32), find
the 'length' of a string or calculate proportional spacing values.

To show this facility in action, the example program right-justifies a piece
of text by:

1. Defining a rub out box.

2. Converting its size into Font Manager co-ordinates.

3. Calculating the 'length' of the string in Font Manager co-
ordinates.

4. Converting these co-ordinates back into OS co-ordinates.

5. Printing the string at an X offset of 1280 minus the previous result.

The following program fragment reproduces this in much the same way as
the example listing 14.1:

MOVE 0,460:MOVE 1280,600:REM set up rub out box
SYS "Font Converttopoints",,1280,140 TO ,BoxXinPts%,BoxYinPts%
SYS "Font-StringWidth",,"Try Corpus",BoxXinPts%,BoxYinPts%,32,13
TO,,XoffPts%,YoffPts% SYS "Font ConverttoOS" ,,XoffPts%,YoffPts%
TO ,Xoff%,Yoff% SYS "Font Paint",,"Try Corpus",%10010,1280-
Xoff%,SOO -

192

The Font Manager

Conclusion
The Font Manager and Font Painter provide the basis for complex text

display facilities based on high-resolution, anti-aliased fonts. Unfor­
tunately, the complexity of the font management software as a whole
makes the process of executing software written for this module rather
painful to watch. Furthermore, anti-aliasing only works at its best for
relatively large characters displayed in black on white, which is not really
surprising given the heritage of the technique in the world of typesetting.

' " 10 REM >Listl4/l
·, .·. 20 REM by Nicholas van Someren

30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 MODE 12
70
80 REM The variable Font$Prefix should be set to
90 REM the directory containing the fonts.

100
110 *SET Font$Prefix $.Welcome.Fonts
120
130 REM Read Font Manager version and load fonts.
140
150 SYS "Font CacheAddr" TO version%,cacheused%,cachesize%
160 vers$="Font Manager vers. "+STR$(version%/100)
170 SYS "Font FindFont",,"Trinity.Medium",48*16,48*16 TO

Trinity% - I
180 SYS "Font FindFont",,"Corpus.Medium",32*16,32*16 TO Corpus%
190 SYS "Font-FindFont",,"Trinity.Medium",24*16,18*16 TO

Smal1Trinity% -
200
210 REM Set up the palette and show them as stripes.
220
230 SYS "Font SetPalette",,0,1,6,&00000000,&FOFOFOOO
240 SYS "Font-SetPalette",,7,8,7,&FOFOF000,&00600000
250 FOR s%=0 TO 1279 STEP 80
260 GCOL s%/80
270 RECTANGLE FILL s%,0,79,1023-32
280 NEXT
290
300 REM Choose the colours and the Trinity font.
310
320 SYS "Font SetFontColours",Trinity%,7,8,7
330 SYS "Font=SetFont",Trinity%
340
350 REM Define a rub out box and print a message.
360
370 MOVE 50,800
380 MOVE 1230,940
390 SYS "Font_Paint",,vers$,%10010,50,840

AOS-M 193

Archimedes Operating System

400
410
420
430

REM Set up a rub out box, and the cursor
REM position after justification.

440 MOVE 100,516:MOVE 1180,572
450 MOVE 1180,532
460
470
480

REM Select the font and display a message.

490 SYS "Font SetFont",SmallTrinity%
500 SYS "Font-Paint",,"This is 24pt justified Trinity",

%100ll, 100, 532
510
520
530
540
550
560

REM Select some new colours and the Corpus font.

SYS "Font SetFontColours",Corpus%,O,l,6
SYS "Font=SetFont",Corpus%

570 REM Define a rub out box
580
590 MOVE 0,160
600 MOVE 1280,300
610
620
630
640

REM Find the point size of the rub out box and
REM the string size (not exceeding the box) .

650 text$="This is on the right"
660 SYS "Font Converttopoints",,1280,140 TO ,BoxXinPts%,

BoxYinPts% -
670 SYS "Font StringWidth",,text$,BoxXinPts%,BoxYinPts%,32,

LEN(text$) TO ,~XoffPts%,YoffPts%
680
690
700
710

REM Convert the size back to OS units and print
REM some right-justified text.

720 SYS "Font ConverttoOS",,XoffPts%,YoffPts% TO ,Xoff%,Yoff%
730 SYS "Font=Paint",,text$,%10010,1280-Xoff%,208
740 END

Listing 14.1. Font demonstration.

194

lS·Soundlntroduction

The Archimedes A-series machines support an eight channel, stereo digital
sound system. This is provided by VIDC using a Direct Memory Access
(OMA) output channel and analogue output circuitry (OAC). There is no
analogue sound system on the Archimedes. All sounds, or waveforms, are
created either mathematically or by use of data tables. The sound data is
processed entirely by software which must also perform any filtering or
modulation required.

The OMA generates audible sounds by having the digital data held in its
buffer converted into analogue signals. The buffer itself is filled by the
Voice Generators which are normally implemented as Relocatable
Modules and have direct access to the sound channels.

~
t\/\/\/\/\
L~~

Figure 15.1. Graphs

The data itself is first logarithmically scaled to provide a greater dynamic
range. This scaling is undertaken automatically by the firmware. The value
of each piece of data can be thought of as an indication of the position of a
speaker cone. For example, a constant series of values will not produce any
sound at all as the speaker cone will not move. On the other hand a rapidly
fluctuating series of values will produce a high frequency tone. The greater

195

Archimedes Operating System

the fluctuation of the series the louder the tone. Likewise a series which
fluctuates only a little would produce a quiet tone.

The Three Levels of Sound
The Archimedes sound system is split up into three levels which are
hierarchically structured. The lowest level is the OMA system, this in turn
activates higher levels which then provide a block of sound data for output
to the OAC.

Level 0 - SoundDMA
The OMA Buffer Handler is activated whenever a new block of sound data
is required, and updates the necessary pointers. Level 0 is essential to the
sound system and so it is provided in firmware as a Relocatable Module
called SoundOMA. If a sound overload occurs, ie, if there is simply to much
sound data to be processed, Level 0 marks the offending channel as over­
run and the real-time buffering is aborted, before being restarted.

Level 0 also caters for any hardware-dependent programming which
requires privileged-mode access, such as stereo positioning.

Table 15.2 lists the various SWI calls and the corresponding * commands, if
one exists.

SWI
Configure
Enable
Speaker
Stereo

Star Command
(None)
AUDIO ON/OFF
SPEAKER ON/ OFF
STEREO <channel> <position>

Table 15.1. The Level 0 SWI and* commands.

Level 1- SoundChannels
The OAC recognises eight logical sound channels and these will produce
sound according to the configuration (ie, stereo-position) of each logical
channel.

There can be one, two, four or eight physical channels. The number in use
will affect the way that the sound buffers are filled, which is accomplished
by means of interleaving the data when filling the OMA buffer.

196

Sound Introduction

Level 1 controls the allocation and de-allocation of channels and will
automatically flush de-allocated channels. Level 1 also provides the means
by which pitch and volume are altered, will attach channels to voice
generators, install and detach voice generators and allows direct real-time
control of musical parameters.

Table 15.2 lists the various SWI calls and corresponding * commands asso­
ciated with Level 1 sound.

SWI
AttachNamedVoice
Attach Voice
Control
ControlPacked
InstallV oice
LogScale
Pitch
ReadControlBlock
Remove Voice
Sound Log
Tuning
Volume
WriteControlBlock

Star Command
*CHANNEL VOICE <channel> <voice name>
*CHANNELVOICE <channel> <voice index>
*SOUND<channel><amp><pitch><duration>

*VOICES

*TUNING <n>
*VOLUME <n>

Table 15.2. SWI calls associated with Level 1 sound

Level 2 - SoundScheduler
Level 2 facilitates the queuing of sounds, ie, their playing in a predeter­
mined order. In addition it also provides the data structures which allow
multiple channel music or sound to be synchronised under simple program
control - the playing of chords.

Notes, timbral changes and most importantly user-supplied code routines
may be scheduled in arbitrary time order. Queued sounds are activated as
events at the appropriate tempo-dependent time in the future. Unfor­
tunately it is not possible to queue sounds to play in the 'past', as some
sound systems allow. Level 2 also allows changes in tempo and beats per
bar to change dynamically whilst maintaining note synchronisation.

Table 15.3 (overleaf) lists the various SWI calls and corresponding *
commands associated with Level 2 sound.

197

Archimedes Operating System

198

SWI Star Command
QBeat
QDispatch (reserved)
QFree
Qlnit
QRemove (Reserved)
QSchedule *QSOUND<chan><amp><pitch><dur><nBeats>
QTempo "TEMPO <n>

Table 15.3. Level 2 SWI calls.

16 ·Sound Star Commands

This chapter details the various * commands associated with sound and
their use. They are classified in alphabetical order under their sound level
num-ber as defined in the previous chapter.

Level 0 Commands

*AUDIO
Syntax:

*AUDIO ON/OFF

All sound interrupt and DMA activity is stopped when *AUDIO OFF is issued.
The DMA buffer is no longer filled so no sound is produced by the DAC. Once
Audio is turned back on with *AUDIO ON, the DMA and interrupt system are
returned to the status they held prior to being turned off. During the time
when audio is off, Level 1 and Level 2 activities are also suspended,
although software interrupts to all levels are still permitted, even if no
sound results. This can be advantageous as it allows sounds to be
'remembered' while AUDIO is off, and to be hastily played as soon as AUDIO
is turned back on.

*SPEAKER ON/OFF
Syntax:

*SPEAKER ON/OFF

This command effectively turns the internal speaker on or off - it has no
effect on the external stereo output. It achieves this by muting the
monophonic mixed signal to the internal loudspeaker amplifier. All DMA
activity continues so sounds will be processed as usual. If you do not
envisage using the external stereo output, then this command can be used
instead of the AUDIO command.

199

Archimedes Operating System

*STEREO
Syntax:

where:

*STEREO <channel> <position>

<channel> is in the range 1 to 8
<position> is in the range -127 to 127.

The DAC supports stereo sound output via the audio socket at the rear of
the machine. Each logical channel, therefore, has its own unique stereo
image. This command usually sets the stereo position of each physical
channel, but can be used to reposition the logical channels if used correctly.

The channels affected are n, n+N, n+2N up to channel 8, where N is the
number of active voices. The default stereo settings for all channels is zero,
ie, centre. There are seven discrete stereo positions:

Range Position
-127 to -80 Full Left
-79 to -48 2/3 left
-47 to -16 1/3 left
-15 to +15 Central
+16 to +47 l/3right
+48 to +79 2/3 right
+80 to + 127 Full right

Level 1 Commands

*CHANNEL VOICE
Syntax:

where:

*CHANNELVOICE <channel><voice index>/<voice name>

<channel> is in the range 1 to 8
<voice index> is in the range 1 to 32.

This command allows different physical channels to be attached to
different VoiceGenerators, in order for them to play different sounds. The
voice index is the VoiceGenerator slot number. This can be determined
using the *VOICES command. The voice name is the VoiceGenerator's
preferred name, which is registered with the Level 0 handler.

200

Sound Star Commands

Examples of use:

*CHANNELVOICE 1 1
*CHANNELVOICE 1 StrinqLib-Soft

*CONFIGURE SoundDefault
Syntax:

*CONFIGURE SoundDefault<speaker><coarsevol><voice>

where:
<speaker> is 0 or 1
<coarsevol> (coarse volume) is in the range 0 to 7
<voice> is in the range 1 to 16.

This command sets the default sound configuration. As these settings are
held in non-volatile CMOS RAM, they remain in use until the machine is
completely reset or they are changed again. Upon power-up, CTRL-RESET,
or BREAK, these values are used to initially configure the speaker, master
volume control and the default bells' voice.

The speaker parameter controls whether the internal loudspeaker should
be on (1) or off (O). The coarse volume sets the default amplitude of the
system sound. This value is equivalent to the *VOLUME setting divided by
16, ie, a coarse volume of 2 is equivalent to a *VOLUME setting of 32. The
Voice parameter can be used to set which voice generator channel one, the
default system bell channel, will be attached to.

Example of use:

*CONFIGURE SoundDefault 1 6 7

*SOUND
Syntax:

*SOUND <channel> <amplitude> <pitch> <duration>

This is the direct equivalent of BASIC's SOUND command. When used, and
providing the selected channel is active and attached, the sound will be
reproduced immediately.

The parameters passed to *SOUND, are all unsigned integers. It should be
noted that when passing negative numbers all 32 bits should be f assed, for
example, to pass the value -1 the equivalent hexadecima number,
&FFFFFFFF, must be passed.

201

Archimedes Operating System

Amplitude
There are two forms of amplitude - linear and logarithmic. The linear
form is expressed as a simple number in the range 0 (silence) to -15 (loud).
The logarithmic scale runs from &100 (silence) to &17F (loud), and a
change of &10 represents a doubling or halving of the volume. Bit seven
can be used as a toggle to facilitate a 'smooth' change of the sound.

For example:

*SOUND 1 &17F &4200 &FE
*SOUND 1 &lEF &4000 &20

will cause the first sound to change pitch and amplitude as soon as the
second command is issued.

Pitch
There are two ways in which pitch can be specified. The first method
allows specification in steps of a quarter of a semitone. The range of
values for this method is 0 to 255. The lowest note (O) is the B, one octave
and a semitone below middle C. Middle Chas a value of 53. Table 16.1 can
be used to look-up the pitch value associated with which note.

Note 1 2 3 4 5 6
A 41 89 137 185 223
A# 1 45 93 137 189 237
B 5 49 97 141 193 241
c 9 53 101 145 197 245
C# 13 57 105 149 201 249
D 17 61 109 153 205 253
D# 19 65 113 161 209
E 21 69 117 165 213
F 25 73 121 169 217
F # 29 77 125 173 221
G 33 81 129 177 225
G # 37 85 133 181 229

Table 16.1. Note associated Pitch values.

A finer degree of control can be obtained using a second method in which
values are specified in the range &0100 to &7FFF. Each value is con­
structed from 15-bits. The top three bits (14, 13 and 12) specify the octave
number, while the remaining 12-bits define the fractional part of the
octave. Each octave is, therefore, split up into 4096 different pitch levels.
Middle C in this case has a value of &4000. Table 16.2. defines these values
for each note for ease of reference:

202

Sound Star Commands

Note 1 2 3 4 5 6 7 8 g
A &OCOO &lCOO &2COO &3COO &4COO &5COO &6COO &?COO
At &0055 &1055 &2055 &3055 &4055 &5055 &6055 &7055
B &OEAA &lEAA &2EAA &3EAA &4EAA &5EAA &6EAA &7EAA
c &1000 &2000 &3000 &4000 &5000 &6000 &7000
ct &0155 &1155 &2155 &3155 &4155 &5155 &6155 &7155
D &02AA &12AA &22AA &32AA &42AA &52AA &62AA &72AA
Of &0400 &1400 &2400 &3400 &4400 &5400 &6400 &7400
E &0555 &1555 &2555 &3555 &4555 &5555 &6555 &7555
F &06AA &16AA &26AA &36AA &46AA &56AA &66AA &76AA
Ff &0800 &1800 &2800 &3800 &4800 &5800 &6800 &7800
G &0955 &1955 &2955 &3955 &4955 &5955 &6955 &7955
Gf &OAAA &lAAA &2AAA &3AAA &4AAA &5AAA &6AAA &7AAA

Table 16.2. Table of Pitch values.

*TUNING
Syntax:

*TUNING n

where:
n is a value in the range -&OFFF to &OFFF

This command overrides the system pitch base. It can be used to raise or
lower the pitch of all sounds. The value is a 16-bit number, which is split up
into two parts.

The top four-bits represent the octave number (0), the remaining bits are
the fractional part of the octave (FFF). A value of zero resets the tuning to
the default vafue. The value is relative, so to raise the pitch of all notes by
one octave, you would use:

*TUNING &1000

*VOICES
This command will list all the currently installed VoiceGenerator's names
which have been registered with the Level 0 handler. Channels that have
been attached to these voices are also indicated. The voice number is the
voice index which is used in the *CHANNELVOICE command. The numbering
of the voices depends on the order in which they were installed, so it may
change. Typically the command might return the following:

203

Archimedes Operating System

Voice
1 1

2 2
3 3

4 4
5
6
7
B
9

Name
WaveSynth-Beep
StringLib-Soft
StringLib-Pluck
StringLib-Steel
StringLib-Hard
Percussion-Soft
Percussion-Medium
Percussion-Snare
Percussion-Noise

AAAAAAAAChannel Allocation Map

Figure 16.1. Default *VOICES output.

*VOLUME
Syntax:

*VOLUME n

where:
n is a value in the range 1 to 127.

This command sets the master volume of the sound system. The range is 1
(quietest) to 127 (loudest). This value is used by all voice generators to scale
the amplitudes of their sounds. The amplitude of any sound command will
be scaled by this value. The default value is 127 and this may be changed by
using the *CONFIGURE VOLUME command. For example:

*VOLUME 63

or alternatively:

*CONFIGURE VOLUME 63

204

Sound Star Commands

Level 2 Commands

*QSOUND
Syntax:

*QSOUND <chan> <amp> <pitch> <duration> <nBeats>

This command is similar to the *SOUND command, but differs in that it is
possible to specify on which beat this note should be played. For full
information on the first four parameters see the description for *SOUND
above.

The beat is an internal counter which is set to zero at the start of each bar.
The beat increment is set by the *TEMPO command. If a value of &FFFFFFFF
(-1) is used for nBeats then, instead of being scheduled for a given number
of beats, the sound is synchronised with the last scheduled sound. For
example:

10 BEATS 200
20 REPEAT
30 UNTIL BEAT =O :REM Wait for start of next bar
40 *QSOUND 1 &17F &4000 &10 50
50 *QSOUND 2 &17F &5000 &10 &FFFFFFFF

This program will produce two tones, one octave apart, to be made 50
beats after the start of the next bar.

*TEMPO
Syntax:

*TEMPO n

where n is a value in the range 0 to &FFFF

This command affects the rate at which scheduled events are played back.
The value n, in fact, sets the rate at which the beat counter is incremented,
and is used to queue the scheduled sounds, for instance:

Value Beat increment Scheduled sounds
2048(&0800) Each beat lasts twice as long Slowed down
4096(&1000) Default.
8192(&2000) Each beat is half as long Speeded up

The default value is &1000. This corresponds to one microbeat per centi­
second.

205

Archimedes Operating System

Each bar is split up into a number of beats. The duration of each beat is
affected by the tempo. The beat counter is set to zero at the start of each
bar. If sounds or music are scheduled using *QSOUND or the five parameter
BASIC SOUND statement, then the execution of notes can be speeded up or
slowed down by changing the TEMPO. The durations of the notes are not
changed.

206

17 · Sound SWI Calls

The SWI calls associated with the Archimedes sound system are detailed
below. They are arranged according to their level classifications.

Level 0 SWI Commands

Sound_ Configure
Pass:

RO Number of channels (n) [rounded up to 1,2,4,8 (N)]
R 1 Samples per buffer
R2 Period in microseconds (µS)
R3 Levell handler code. [normally 0 to preserve system levell]
R4 Level2 handler code. [normally 0 to preserve system level2]

Zero for any parameters will not change that setting.

Constraints:
RO 1 .. 8 (rounded to 1,2,4,8)
Rl 16/N .. Sound DMA Buffer limit/N
R2 3/N .. 255/N

Returned:
Previous settings.

Default:
RO 1
Rl &DO
R2 48

The Number of Sound Channels (RO)
The value passed in RO will be rounded to 1,2,4,8. Channels are
multiplexed into the eight logical channels available. If only one physical
channel is available then all eight logical channels will be used for sound.
Similarly if only two physical channels are available, then every other
logical channel will be used for each physical channel, ie, channel 1 will use
logical channels 1,3,5 and 7, and channel 2 will use logical channels 2,4,6
and8. '

207

Archimedes Operating System

Because of this interleaving the channels are multiplexed into one half,
quarter or eighth of the sample period. This results in the overall signal
level per channel being scaled down by the same amount, so the overall
signaf peak level for all multi-channel modes remains constant. The more
physical channels in operation, the quieter each one becomes.

The DMA Buffer Size and Sample Rate (Rl, R2)
As a rule these settings should not generally be altered. The sample rate is
probably of greatest use as its parameter defines how long each piece of
sample data should last. 10000 bytes of sample data played at the default
sample rate of 48 microseconds would result in a sound lasting 0.48
seconds. If the sample rate was then changed to 50 microseconds, the
sound would last 0.50 seconds. Therefore, if data is sampled at different
sample rates, but the same relative pitch needs to be maintained, then this
can be achieved by altering the sample rate value. The value of 48
microseconds is derived in the following way:

8 channel multiplex rate = 166.666 kHz
Overall audio sample rate = 20.833 kHz

period per byte = l/sample rate= 1/(20833)
4.8e-5

= 48 µsec

The DMA buffer size should not be changed. Every time the buffer becomes
empty a buffer fill request interrupt occurs, and the voice generators are
requested to fill the buffer. It is important that this interrupt rate is kept at
a sensible level so as not to interrupt the processor to often. The default
rate is around one centisecond - more precisely 0.99841 centiseconds. This
value of 0.99841 centiseconds is derived in the following way:

Sample rate per channel 20833 Hz
Bytes per channel (DMA size) 208
Interrupt rate 20833/208 = 100.1587 Hz
Buffer period 1/100.1587 = 0.99841 centiseconds

The following program (Listing 17.1) demonstrates the use of the
Sound_ Configure swr; the effect of more voices on the amplitude and the
effect of changing the microseconds per sample has on pitch.

208

10 REM >List17/1
20 REM (C) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 MODE 8
80 PROCrestore

Sound SWI Calls

90 PRINT"Sound_Configure"'
100
110 SYS "Sound Configure",1
120 PROCsound info
130 PRINT' "Configured for one voice"
140 SOUND 1,&17F,200,20
150 PRINT"SOUND 1,&17F,200,20 generates a loud hi pitched sound"
160 PROCpause
170
180 SYS "Sound Configure",8
190 PROCsound info
200 PRINT'"Configured for EIGHT voices"
210 SOUND 1,&17F,200,20
220 PRINT"The same sound statement produces a much quieter

sound"
230 PROCpause

SYS "Sound Configure",1,0,50
PROCsound info
SOUND 1,&l7F,200,20

240
250
260
270
280
290
300

PRINT'"The microsecond per sample has now been increased."
PRINT"This results in a tone of lower pitch."
PRINT"This is because every piece of data is assumed to take

more time"
310 PRINT"to process, ie, the PLAY back rate has been lowered."'

"or the sample rate increased."
320 A=INKEY(20*5)
330 END
340
350 DEF FNnum(L%,V%)
360 =RIGHT$(STRING$(L%," ")+STR$V%,L%)
370
380 DEF PROCsound info
390 SYS "Sound Configure",0,0,0,0 TO N,SPB%,US%,L1%,L2%
400 PRINT"Channels ";FNnum(2,N)
410 PRINT"uS per sample ";FNnum(2,US%)
420 ENDPROC
430
440 DEF PROCpause
450 A=INKEY(20*5)
460 PRINT"Press any key" :A=GET
470 PRINT
480 ENDPROC
490
500 DEF PROCrestore
510 *TUNING 0
530 ENDPROC

Listing 17.1. Demonstrating the Sound_Configure SWI.

AOS-N 209

Archimedes Operating System

Sound_Enable
Passed:

RO New State
2=0N
1 =OFF
0 = No change (just read previous state)

Returned:
RO Previous state

2=0N
1 =OFF

This SWI is used by the *AUDIO command and suspends any DMA interrupts.
It is important to remember that any subsequent sound commands may be
'stored', so that when the sound is enabled the 'stored' sounds will be
played immediately.

There is no simple way to flush the sound buffers. The only way to clear the
sounds is to detach and then re-attach the voices, or to set the SCCB channel
flags for each to two, which will make the Level 0 handler flush the
channels, however, doing this is prone to problems, as the Voice
Generator's will not be informed of the change.

Sound_Speaker
Passed:

RO New State
2=0N
1 =OFF
0 =No change (just read previous state)

Returned:
RO Previous state

2=0N
1 =OFF

This SWI is used by the *SPEAKER command and switches off the mono-mix
of the left and right audio channels to the internal loudspeaker amplifier.
Sounds are still processed and DMA interrupts continue. The stereo audio
output remains active. The following program (Listing 17.2) illustrates the
'storing' of sounds while Audio is off and the effect of Speaker off.

210

Sound SWI Calls

10 REM >List17/2
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 VOICES 1
80 *CHANNEL. 1 1
90

100 MODE 8
110 PRINT"SWI Sound Enable"'
120 PROCspeaker(%10):PROCstate(%10) :SOUND 1,-15,100,10
150 PRINT"SOUND 1,-15,100,lO"'"Press a key":A=GET:PRINT
160 PROCstate(%01) :SOUND 1,-15,100,10
161 PRINT"SOUND 1,-15,100,lO":PRINT"Press a key":A=GET:PRINT
200 PROCstate(%10)
210 PRINT"Sound statements issued when the sound is disabled are

produced"
220 PRINT"when the sound is then turned on."
230 PRINT"Buffers unfortunately cannot easily be flushed."
240 PRINT"To flush the channels, detach all voices and the

reattach them."
250 A=GET:PROCstate(%01)
260
270 CLS
280
290
320
321

PRINT"SWI Sound Speaker"'
PROCstate(%10) :PROCspeaker(%10) :SOUND 1,-15,100,10
PRINT"SOUND 1,-15,100,lO"'"Press a key":A=GET:PRINT

330 PROCspeaker(%01) :PRINT"SOUND 1,-15,100,10"
350 SOUND 1,-15,100,10
360 PRINT"Sounds played while the speaker is off are still

played"
370 PRINT"Press a key" :A=GET:PRINT
380 PROCspeaker(%10)
390 END
400

DEF PROCstate(V%)
SYS "Sound Enable",V%
SYS "Sound-Enable",0 TOR%
IF R%=1 THEN PRINT"Sound
ENDPROC

DEF PROCspeaker(V%)
SYS "Sound Speaker",V%
SYS "Sound-Speaker",0 TOR%

Off" ELSE PRINT"Sound On"

410
420
430
440
450
460
470
480
490
500
510

IF R%=1 THEN PRINT"Speaker Off"
ENDPROC

ELSE PRINT"Speaker On"

Listing 17.2. Storing sounds.

211

Archimedes Operating System

Sound Stereo
Passed:

RO Logical I Physical Channel
Rl Image position

-128 no change
-127 Full left
-79 2/3 left
-47 1/3 left
0 Central
47 1/3right
79 2/3right
127 Full right

Returned:
RO Preserved
Rl Previous image position

This SWI facilitates the re-positioning of the stereo image of the specified
channel. There are seven stereo image positions. Depending on the number
of physical channels, the call can be used to either position the physical OR
logical channels. Repositioning of the logical channels is not advised.

For N physical channels enabled this call will move channels C, C+N,
C+2N up to logical channel 8. A table of the logical channels that will be
moved according to the physical channel specified and the number of
physical channels is given below:

212

Physical Channel
1 1

2

2
3
4
5
6
7
8

1
3
5
7

Logical channels moved
l,2,3,4,5,6,7,8

2,3,4,5,6,7,8
3,4,5,6,7,8

4,5,6,7,8
5,6,7,8

6,7,8
7,8

8

1,3,5,7
3,5,7

5,7
7

Sound SWI Calls

Physical

4

8

Channel
2
4
6
8

1
5
2
6
3
7
4
8

1
2
3
4
5
6
7

Logical channels moved
2,4,6,8

4,6,8
6,8

8

1,5
5

2,6
6

3,7
7

4,8
8

1
2
3
4
5
6
7

This method of moving the logical channels can be used to produce
different stereo positions.

The following program (Listing 17.3) indicates the relative merits of logical
channel stereo positioning, as opposed to physical channel positioning and
positioning of the channels while a sound is being played. For sensible
results this program is best run using speakers or headphones attached to
the audio jack at the rear of the machine.

10 REM >Listl7/3
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 MODE 8
80 PRINT"SWI Sound Stereo"'
81 PRINT"This effect can not be experienced by using the

internal speaker"'
90 DIM posn (7)

100 FOR N%=1 TO 7
110 READ posn(N%)
120 NEXT
130
140 VOICESl

213

Archimedes Operating System

150 PRINT"Moving stereo posn THEN playing a sound"
160 SYS "Sound Stereo",1,0:SOUND 1,-15,1,10
1 70 FOR P%=1 TO 7
180 PRINT" Stereo ";posn (P%)
190 SYS "Sound Stereo",1,posn(P%)
200 SOUND 1,-lS,100,10
210 A=INKEY (40)
220 NEXT
230
240 PROCpak
250 PRINT"Moving stereo posn WHILE playing a sound"
260 SOUND 1,-15,100,10*6
270 FOR P%=7 TO 1 STEP-1
280 PRINT"Stereo ";posn(P%)
290 SYS "Sound Stereo",1,posn(P%)
300 A=INKEY(40)
310 NEXT
320 PRINT"The click occurs when the stereo posn is moved"
330 PROCpak
340 CLS
350
360 PRINT"Moving the logical cha nnels"'
370 VOICES2
380 PRINT"Logical channels 1,3,5 and 7 on the left"
390 SYS "Sound_Stereo",1,-127:SOUND 1,-15,180,lO:PROCpak
400
410 PRINT"Logical channel 7 on the right"
420 SYS "Sound_Stereo",7,127:SOUND 1,-15,180,lO:PROCpak
430
440 PRINT"Logical channels 5 and 7 on the right"
450 SYS "Sound_Stereo",5,127:SOUND 1,-15,180,lO:PROCpak
460
470 PRINT"Logical channels 3,5 and 7 on the right"
480 SYS "Sound_Stereo",3,127:SOUND 1,-15,180,lO:PROCpak
490
500 PRINT"Logical channels 1,3,5 and 7 on the right"
510 SYS "Sound Stereo",1,127:SOUND 1, - 15,180,lO:PROCpak
530 END -
540
550 DATA -127,-79,-47,0,47,79,127
560
570 DEF PROCpak
580 PRINT"Press a key":A=GET:PRINT
590 ENDPROC
600
610 DEF FNnum (L%, V%)
620 =RIGHT$(STRING$(L%," ")+STR$V%,L%)
630
640 DEF FNhnum (L%, V%)
650 =RIGHT$(STRING$(L%," ")+STR$-V%,L%)

Listing 17.3. Stereo re-positioning.

214

Sound SWI Calls

Level 1 SWI Commands

Sound_Install Voice
Passed:

RO Voice Generator Header Code
0 for don't change

R 1 Voice slot specified
0 for next free slot

Returned:
RO String pointer - name of previous voice (or error message)

Rl voice number allocated
0 indicates a failure to install

This SWI is used to install a voice generator at which point any number of
physical channels can be attached to it. The code necessary to produce voice
generators is given below. The installed voice list can be examined by
passing zero in RO, on exit the voice name will be pointed to by RO. In
Arthur 1.2 the voice table is limited to 32 entries.

Sound Remove Voice
Passed:

R 1 Voice slot to remove

Returned:
RO string pointer - name of previous voice (or error message)
Rl voice number removed

0 indicates a failure to remove a voice

This SWI is used to remove voice generator's. It may be called if the voice
generator is a module and the RMA is tidied, or cleared.

Sound AttachNamedVoice
Passed:

RO Physical channel number
Rl Pointer to voice name (zero terminated string)

Returned:
RO Preserved
R 1 Preserved

0 if fail

215

Archimedes Operating System

This call is used by the *CHANNELVOICE command and will attach the
physical channel specified in RO to the named voice. When a channel is
attached to a new voice, the previous voice is shut down and the new voice
reset. There is no facility to swap voices while a sound is being played. This
level will attach the logical channels depending on the number of physical
channels.

Sound_Attach Voice
Passed:

RO Physical channel number
R 1 Voice slot to attach

0 to detach voice and mute

Returned:
RO Preserved

0 if illegal channel number
R 1 Previous voice number

0 if not previously attached

This SWI allows a particular physical channel to be attached to a voice slot,
the number of which can be ascertained from the output information
displayed by *VOICES. Voice slot numbers may change so *VOICES should
always be used first to obtain the correct number.

When a new voice is attached, the old voice is first shut down and there is
no facility to swap voices mid-sound. This call is used by the
*CHANNELVOICE command and this level caters for the logical channels.

Sound_ Volume
Passed:

RO Sound volume
1 (quietest) to 127 (loudest)
0 will inspect last setting

Returned:
RO Previous volume

This SWI sets the overall volume and is used by the *VOLUME command.
Internally the volume is represented as a 7-bit logarithmic value, so a
change of &10 represents a doubling or halving of the volume. Voice
generators should take note of this value, and scale their waveforms
accordingly. The default value is taken from the CMOS RAM setting.

216

Sound_SoundLog
Passed:

RO Signed 32-bit number

Returned:
RO 8-bit signed scaled logarithm

Sound SWI Calls

This SWI converts 32-bit signed integers to an 8-bit signed logarithmic
value using an internal lookup table. It is used to convert sampled data to a
logarithmic scaled value for use in Voice Generators.

Sound_LogScale
Passed:

RO 8-bit signed audio logarithm

Returned:
RO 8-bit scaled logarithm

This SWI maps an internal 8-bit signed logarithm to one scaled to the
current volume.

Sound_Pitch
Passed:

RO 15-bit pitch value

Returned:

bits 14-12 represent the octave number
bits 11-0 represent the octave division

RO 32-bit phase accumulator value

This SWI maps a 15-bit pitch to an internal format pitch value.

Sound_ Tuning
Passed:

RO New tuning value
0 = don't change

Returned:
RO Previous setting

This SWI sets the tuning parameter and is used to offset the pitch values
used throughout the system and is used by the *TuNING command. See the

217

Archimedes Operating System

description of the "TUNING command in the previous chapter for an
explanation of the range of RO.

Sound_ Control
Passed:

RO Physical Channel
R 1 Amplitude

Either 0-15
or &100 to &lFF
of which bit 7 is: 0 for GATE ON/OFF

1 for smooth update
R2 Pitch

Either 0-&FF
or &0100 TO &7FFF for enhanced pitch control

bits 14-12 represent octave number
bits 11- 0 represent fractional part of the octave

R3 duration in 5 centisecond periods
except &FF which is infinite

Returned:
RO-R3 Preserved

This SWI command allows immediate execution of the specified sound
channel- the parameters take effect on the next buffer fill entry. The GATE
on/off causes a new note to be played resulting in a possible 'click', whilst
smooth causes the changing of note parameters without restarting the
note. This allows the pitch or volume of a note to be altered while it is
playing, and can be effectively used for pitch-bend.

For an explanation of amplitude and pitch see the *SOUND command.

Note: GATE is in effect a switch which allows the sound to be turned off
(effectively killing the last note) then on (to play the next one). 'I:he GATE
option should not be used if a smooth change from one note to another is
required.

Sound ControlPacked
Passed:

218

RO Amplitude and channel (&AAAACCCC)
High word is amplitude, low word is channel

Rl Duration and pitch (&DDDDPPPP)
High word is duration, low word is pitch

Sound SWI Calls

Returned:
RO,Rl Preserved

In operation this SWI is similar to Sound_Control, but differs in that its
parameters are packed together. For example:

SYS "Sound_Control",l,&17F,&4200,16

becomes:

SYS "Sound_Contro1Packed",&017F0001,&00104200

Sound_ReadControlBlock
Passed:

RO Channel
R 1 Offset to read from

Returned:
RO Preserved

0 if fail, invalid read offset
Rl Peserved
R2 32-bit word read if RO non zero

This SWI will read-32 bit words from the Sound Channel Control Block
(SCCB). The values in the SCCB are not standard and they will depend on the
particular Voice Generator, and Level 1 handler. The following is a list of
the SCCB values which are supposed to be constant under the system Level 1
handler:

Use Word
0
1

Amplitude, index to voice table, voice instance, control flags
Phase accumulator pitch oscillator

2
3
4-8

Number of buffer fills
Working registers

Sound_ WriteControlBlock
Passed:

RO Channel
Rl Offset to write
R2 32-bit value to write

Returned:
RO Preserved

0 if fail, invalid read offset

219

Archimedes Operating System

R 1 Preserved
R2 Previous 32-bit word, if RO non zero

This SWI allows 32-bit words to be written into the SCCB.

Listing 17.4 shows how to attach channels to named and numbered voices.
It also contains the rudiments of a BASIC version of the *VOICES command.
The use of bit seven in the extended amplitude settings is also
demonstrated.

10 REM >Listl7/4
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 MODE 8
80 VOICESl
90 SYS "Sound_Volume", &7F

100
110 PRINT "Sound AttachNamedVoice"'
120
130 PRINT "SYS Sound AttachNamedVoice,l,StringLib-Hard"
140 SYS "Sound AttachNamedVoice",l,"StringLib-Hard"
150 SOUND l,-lS,100,10
160 PROChak:CLS
170
180 PRINT "SoundinstallVoice"'
190 PRINT "Listing current Installed voices in BASIC"'
200 FOR N%=1 TO 32
210 SYS "Sound Instal1Voice",0,N% TO A$,F%
220 IF F%=0 THEN PRINTA$
230 NEXT
2 4 0 PROChak: CLS
250
260 PRINT "Sound AttachVoice"'
270 PRINT "SYS Sound AttachVoice,1,7"
280 SYS "Sound AttachVoice",1,7
290 SOUND l,-lS,100,10
300 PROChak:CLS
310
320 PRINT"Sound Control & Sound Volume"'
330 SYS "Sound AttachVoice",1,1-
340 PRINT"SYS Sound Control,l,&17F,&4000,&20"
350 SYS "Sound Control",l,&17F,&4000,&20
360 PROChak -
370
380 PRINT"'SYS Sound Volume,&6F":SYS "Sound Volume",&6F
390 SYS "Sound Control",l,&17F,&4000,&20 -
400 PROChak: CLS
410
420 SYS "Sound_Volume",&7F

220

Sound SWI Calls

430 SYS "Sound AttachVoice",1,7
440 PRINT"Smooth update of sounds"'
450 SYS "Sound Control",1,&16F,&4000,&20
4 60 A=INKEY (10)
470 SYS "Sound Control",1,&lFF,&4200,&20
471 PROChak -
480 PRINT"as opposed to"
490 SYS "Sound Control",l,&16F,&4000,&20
500 A=INKEY(lO)
510 SYS "Sound_Control",l,&17F,&4200,&20
520
530 END
540
550 DEF PROChak
560 PRINT' "Press any key" :A=GET
570 ENDPROC

Listing I7.4. Attaching channels.

Level 2 SWI Commands

Sound_Qlnit
Passed:

Nothing

Returned:
RO 0 indicates success

Calling this SWI clears any scheduled sounds queued and resets .the tempo
and beat variables to their default values.

Sound_QSchedule
Passed:

RO Schedule period (from start of bar)
&FFFFFFFF (-I) to synchronise with the last schedule event

RI 0 causes a Sound ControlPacked call
swr number, of the form &FOOOOOO + sw1 number

R2,R3 Are the parameters for RO and RI for the swr
Returned:

RO 0 is successfully queued
<0 for failure, or queue full

22I

Archimedes Operating System

This SWI is used by the *QSOUND command. Registers 2 and 3 contain the
data which would normally be passed in registers 0 and 1 to the
Sound_ControlPacked SWI. Register 0 holds the nBeats parameter.
Register 1 will normally be zero, in which case the Sound_ControlPacked
sw1 will be called, eg,

SYS "Sound_QSchedule",10,0,&017F0001,&00204000

is equivalent to:

SYS "Sound_Contro1Packed",&017F0001,&00204000

except that it will be played 10 beats after the new bar, when the beat
counter is set to zero. This is identical to:

*QSOUND 2 &17F &4000 &20 10

or alternatively:

SOUND 2,&17F,&4000,&20,10

which plays a middle C for &20*5 centiseconds on channel 2 when the beat
counter reaches 10.

If register 1 is non-zero then other SWis can be called. This is a very
powerful feature. For example, if at the start of the third bar in a piece of
music you wanted to attach channel 5 to voice 3, instead of having to
continually check to see if the piece of music had reached the third bar, you
could simply insert in the sound data the following SWI call:

SYS "Sound_QSchedule",0,Sound_AttachVoice,5,3

where Sound_AttachVoice is the value of the SWI plus &FOOOOOO, ie,
Sound_Attach Voice+&FOOOOOO.

The program given in listing 17.S demonstrates the QSchedule command in
both forms, by attaching channel one to different voices during the queuing
of the sounds.

10 REM >Listl7/5
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 MODE 8
80 PRINT"SYS Sound_QSchedule"
90

100 SYS "Sound Qinit"
110 TEMPO &4007BEATS 100
120 SYS &_39,, "Sound_AttachVoice" TO Sound AttachVoice

222

Sound SWI Calls

130 Sound AttachVoice+=&FOOOOOO
140
150 PRINT"Attach channel one to voice one, ";
160 SYS "Sound_QSchedule",19,Sound_AttachVoice,l,l
170
180 PRINT"play a note"'
190 SYS "Sound_QSchedule",20,0,&017F0001,&00104000
200
210 PRINT"Attach channel one to voice THREE, ";
220 SYS "Sound_QSchedule",79,Sound_AttachVoice,l,3
230
240 PRINT"play a note"'
250 SYS "Sound_QSchedule",80,0,&017FOOOl,&00104200
260
270 END

Listing 17.5. Demonstrating the QSchedule command.

Sound_QTempo
Passed:

RO New tempo 1 to &FFFF (&1000 default)
0 for don't change

Returns:
RO Previous tempo value

This swr is used by the *TEMPO command. It is used to set the tempo
parameter which is used by the Level 2 scheduler.

Sound_ QB eat
Passed:

RO 0 returns beat counter value

Returned:

-1 returns the current beat COUNT value .
< -1 resets the beat counter and COUNT to zero
>0 sets the beat COUNT to N, counts 0 to N-1

RO Current beat counter number is passed
0 otherwise the previous beat COUNT value is used

This call is used by the BASIC commands BEAT and BEATS. The beat counter is
an internal counter which starts at zero and counts up to the beat COUNT
value.

The varied use of QTempo and QBeat are highlighted in the Listing 17.6.

223

Archimedes Operating System

10 REM >List17/6
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Example sound programs.
60
70 MODE 8
80 TEMPO &1000
90 PRINT" Sound _QBeat"'

100
110 SYS "Sound QBeat",&100
120 PRINT"SWI Sound QBeat, &100"
130 PRINT"This has set the beat COUNT to &100, ie beats will

count from"
140 PRINT"O to &FF"
150 PROCinfo
160 PROChak
170
180 SYS "Sound QBeat",-2:PRINT"SYS Sound QBeat,-2"
190 PRINT"The beat counter has been turned off"
200 PROCinfo
210 PROChak
220
230 SYS "Sound QBeat",20:PRINT"SYS Sound QBeat,20"
240 PRINT"The beat counter has been turned on, range 0 to 19"
250 PROCinfo
260 PROChak
270
280 CLS
290 PRINT"Sound_QTempo"'
300
310 OFF
320 SYS "Sound QTempo",&1000
330 SYS "Sound-QBeat",200
340 TIME=O:PRINT"At present the counter counts quickly"
350 REPEAT
360 SYS "Sound QBeat",0 TO C%
370 PRINTTAB (5-;-5) C%" .. ;
380 UNTIL TIME >500
390
400 PRINTTAB(0,7)
410 PRINT"Altering TEMPO to slow it down"
420 PRINT"SYS Sound QTempo,&FO"
430 SYS "Sound_QTempo",&FO
440
450 TIME=O
460 REPEAT
470 SYS "Sound QBeat",0 TO C%
480 PRINTTAB(5-;-ll)C%" ";
490 UNTIL TIME >500
500
510 ON:PRINT
520 END

224

Sound SWI Calls

530
540 DEF PROCinfo
550 SYS "Sound_QBeat",0 TO counter:PRINT"Beat counter ";counter
560 SYS "Sound QBeat",-1 TO count: PRINT"Beat COUNT ";count
570 ENDPROC
580
590 DEF PROChak
600 PRINT"Press a key" :A=GET:PRINT'
610 ENDPROC

Listing 17.6. Using QTempo and QBeat.

AOS--O 225

18 ·Voice Generator

The voice generator is a segment of machine code which is used to fill the
DMA buffer on demand. Before it can be used, a generator must first be
installed and then channels can be attached to it. The voice generator code
contains an eight word entry control block called the Sound Voice Control
Block - SVCB.

SVCB entries are used by the Level 1 handler to call the appropriate pieces
of code for attaching and detaching the voice under supervisor mode, and
real-time buffer filling which is entered in IRQ mode. The title is used by the
Level 1 handler to identify the voices and should be concise, but
informative.

The speed of the generators is of paramount importance, and so ROM based
voice generators are usually copied down into the RMA, as modules, for
faster execution of code. Homegrown voice generators should therefore
usually be implemented as relocatable modules. This is necessary because if
the machine code moves, or is wiped, without the Level 1 handler being
informed that the voice is no longer active. Any subsequent use of sound
will probably cause an error which, due to the very rapid and repeated
calling of the code, will result in a stream of errors which cannot be
stopped other than by resetting the machine.

A side effect of this is that modules have to be written in such a way that if
the RMA is tidied up the voice will be detached before the tidy, and the
reattached afterwards. This is very easily accomplished due to the
initialisation and finalisation calls made to a module when such a
command is issued.

The SVCB
The SVCB is made up of eight word entries, and their construction is shown
overleaf in table 18.1.

226 '

Voice Generator

Name
Sound Voice Fill
Sound Voice Update

Sound Voice GateOn
Sound Voice GateOff
Sound Voice Instantiate

Purpose
Fill DMA buffer
Change SCCB parameters while
sound is playing
Sets initial parameters for sound
Terminates a sound
Channel trying to attach
itself to voice
Channel detatched from voice
Channel to be installed

Sound Voice Free
Sound Voice Install
Sound Voice Title Name given to voice, for levelO handler

Table 18.1. Construction of the SVCB.

The first four entries are used for the real-time DMA buffer filling, and are
entered in IRQ mode. Several registers are passed when any of these are
called:

R6 Negative if Level 0 configure changed
R7 Channel number
R8 Sample period in microseconds
R9 Pointer to SCCB

RIO DMA buffer limit (+1)
Rl 1 DMA buffer interleave increment
R12 DMA buffer base pointer

The next three entries are used by Level 1 SWI calls, and are therefore
entered in Supervisor Mode. The last entry is a relative address offset to
the voice name from the start of the SVCB.

Gate On
After a voice has been installed and a channel attached to it, it is ready to
generate sound. When a sound command is issued the first piece of code to
be called will usually be GateOn. At this point, Register 9 points to the start
of the SCCB (Sound Channel Control Block). The SCCB is a 256 byte block of
data which contains all the information about a particular channel. The
arrangement of this data is listed in table 18.2 overleaf.

227

Archimedes Operating System

Offset
&00
&01
&02
&03
&04
&08
&OC
&10
&14
&18
&IC
&20
&24
to &FF

Contents
Amplitude
Index to voice table
Voice instance number
Control I status flags
Phase accumulator pitch oscillator
Timbre, not currently used
Number of buffer fills
Working Register 4 (Absolute wavetable pointer)
Working Register S (Absolute end of wavetable)
Working Register 6 (Absolute pointer to LogAmp table)
Working Register 7
Working Register 8

Acom reserved

Table 18.2. Data arrangement in the SCCB.

This block is updated by the Level 1 handler. When the Gate On code is
called the first four entries (ie, words 0 to 3) have been updated. Working
R4 through to working RS are for the user. In the example Voice
Generator, working R4 is used as the wave table pointer. Working RS is the
absolute end of the data. Working R6 points to the absolute address of the
LogAmpPtr. So these registers must be set up ready for the buffer fill
routine.

Fill
This is called by the Level 1 handler when the DMA buffer needs to be filled
with the next sample buffer. Again R9 points to the SCCB. The working
registers must first be loaded as follows:

LDR R4, [R9, #&10]
LDR RS, [R9,#&14]
LDR R6, [R9,#&18]

\ Waveform pointer
\ End of waveform
\ Amplitude scale table

The waveform data will be stored from R12 to RIO with an interleave
value of Rll. The interleave value is the way in which the sound channels
are multiplexed. The following diagram may help to explain how the DMA
buffer is filled with the waveform values from the different channels:

228

Voice Generator

Voices
1

2

4

8

Bytes from Channels
11111111
bObl b2b3b4 b5b6 b7
b8b9bA bBbC ...

12121212
bObObl bl b2b2b3b3
b4b4b5b5b6 ...

12341234
bObObObObl bl bl bl
b2 b2 b2 b2 b3 . . .

12345678
bO bO bO bO bO bO bO bO
bl bl bl bl bl. ..

Interleave value
1

2

4

8

It is a very simple matter to write the FOR ... NEXT loop in assembler to fill
the buffer:

.Loop
STR RO, [Rl2] ,Rll
CMP Rl2,Rl0
BLT Loop

\ Get wave form value into RO
\ Store the value and increment Rll
\ Reached end of the buffer?

In the example R4 points to the waveform data. Therefore the next value
in the waveform data must be loaded into RO so it can be stored into the
correct position in the DMA buffer, and R4 updated to point to the next
byte.

When a piece of the waveform is played, every byte of the waveform will
be placed in the DMA buffer. To double the pitch the data must be played
twice as fast, in effect taking every other piece of waveform data. To half
the pitch each piece of data must be placed in the buffer twice, eg,

Bytes stored in the buffer

Normal pitch
Twice the pitch
Half the pitch

012345678910
0 2 4 6 8 10 12 14 16 18 20
00112233445

R2 contains the value used to advance the waveform and R4 points to the
next piece of data. The following piece of assembler will advance the
waveform, and load the value into RO:

ADD R2,R2,R2,LSL #16
LDRB RO I [R4, R2, LSR #24]

229

Archimedes Operating System

R2 is split up into two parts. Bits 16 to 31 are used as the phase
accumulator, while bits 0 to 15 are used a the increment. The high byte of
R2 is used to load the correct byte fro the waveform. If, for example,
every byte from the waveform was requ· ed, R2 would initially have the
value &00000100:

Iteration
0
1
2
3

R2
&00000100
&01000100
&02000100
&03000100

Hig byte
&00
&01
&02
&03

So to take every piece of data twice, R2 would have the value, &00000080:

Iteration R2 High byte
0 &00000080 &00
1 &00800080 &00
2 &01000080 &01
3 &01800080 &01

4 &02000080 &02

The value just obtained should be scaled to the current volume. On entry
RI contains the amplitude passed with the sound command, and this value
also needs to be scaled. R6 points to the logarithmic amplitude lookup table
through which the amplitude is scaled. The following assembler will
perform this task:

AND Rl,Rl,#&7F \Amplitude in range 0 to &7F
LDRB Rl, [R6,Rl,LSL#l] \ Get value from table
MOV Rl,Rl,LSR #1 \ Scale it
RSB Rl,Rl,#127 \make attenuation factor

This conversion is made as soon as the fill code is entered. The wave form
values are also scaled and then stored in the OMA buffer:

SUBS RO,RO,Rl,LSL #1
MOVMI R0,#0
STRB RO, [R12],Rll

\ Scale amplitude
\ correct for underflow
\ Store value in DMA buffer

Once the buffer has been filled R4 is updated, so that the next time the
buffer fill is called it points to the next byte in the waveform, this must then
be stored back into the SCCB:

ADD R4,R4,R2,LSR #24 \ Update the pointer
STR R4, [R9,#&10] \ store in SCCB

230

Voice Generator

Gate Off
This is called when the waveform pointer reaches the end of the sampled
data, or a new sound has been issued and the buffer needs to be flushed.
Any remaining parts of the DMA buffer must then be filled with zeros,
which is accomplished using the same FOR ... NEXT loop, but this time
storing zeros in the DMA buffer:

MOV R0,#0
.Floop
STRB RO, [Rl2),Rll
STRB RO, [Rl2),Rll
STRB RO, [Rl2),Rll
STRB RO, [Rl2),Rll
CMP Rl2,Rl0
BLT Floop

The Level 1 handler must now be informed that the sample has been
finished, and it must flush the channel buffers next time. This is done by
setting the control/status bits in the SCCB. The flags are as follows:

Bit Meaning
7 Quiet, inactive
6 Kill pending
5 Initialise pending
4 Fill pending
3 Active
2 Overrun
1 Flush bit 1
0 Flush bit 0

The low two bits are used as a flush counter. If the fill is successful exit with
RO set to eight. To inform the Level 1 handler that the voice needs to be
flushed, exit with RO set to two or three.

If you stop sound abruptly then there may be an audible click. This can be
avoided in two ways. Firstly alter the sampled data so that the sound 'dies'
away. This is best done by extending the sample, and then adding a slight
echo. The second, and preferable way, is to make the sound decay by
entering a release phase, which may require buffer filling for a number of
buffer periods. In this case close attention to the number of buffer fills
(word 3 in the SCCB) is advised.

231

Archimedes Operating System

Update
Generally when a sound is played the previous sound is terminated, Gate
Off, and then the new sound starts, Gate On. If however a smooth change
over is required then setthe relevant bit in the amplitude parameter. The
amplitude will be in the range &100 to &17F. However, if bit 7 is set, a
smooth update will be requested. If this is the case then the update code is
called, and the SCCB parameters are updated. In the example voice
generator all this call does is to call the buffer fill code, as the fill code
always refers to the SCCB for the amplitude and pitch.

Instantiate
Many channels may be attached to one voice, however complex voice
generators may not be able to support more than one voice. Therefore, this
code is called with the channel number-1 passed in RO. If the voice cannot
support another channel then the value in RO must be changed.

Free
This is called whenever a channel is detached from a voice, so that the
Voice Generator can keep an up to date list of attached channels. This call
must free the channel. The channel number-1 is passed in RO and all
registers must be preserved.

Install
This code is somewhat redundant as Voice Generators should be
implemented as relocatable modules, and will therefore already be
installed when called.

Voice Generator Code
The program listed opposite (listing 18.1) will convert a sampled
waveform, created using the Armadillo sampling software, to a relocat­
able voice module. When run, you will be asked to supply two filenames -
the sample filename and the filename for the module. Next enter the name
of the voice, eg, crash or piano, and finally the channel number you wish to
attach to the voice when it is loaded or initialised. Listing 18.2. will create a
suitable data file that can be used with ModMaker (listing 18.1).

The sample will then be loaded, converted, the module header code added,
and then saved to disc. The module will then automatically be loaded back

232

Voice Generator

in. Typing *VOICES will list the new voice, while *MODULES and *HELP
MODULES will supply information pertaining to the new voice.

You can quickly test the new module using a few simple star commands:

*FX 213 <pitch> Sets the pitch of the bell
*FX 212 <volume> Sets the bell volume (&80 loudest)
*FX 211 <channel> Sets the bell channel number

The sample can be heard by pressing CTRL-G. It should not be too hard to
find the correct playback pitch, and it is best to use the & 100 upwards pitch
values.

10 REM >Listl8/l
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Voice Generator Module Creator
60
70 INPUT"Sample name ";name$
80 INPUT"Module name ",mod$
90 INPUT"Voice Title ";title$

100
110 X=OPENIN(name$) :Sample Size=EXTfX:CLOSE tx
120 PRINT"Voice ?"; :V%=GET::-48
130 DIM C% &lOOO+Sample_Size
140
150 FOR OPT%=4 TO 6 STEP2
160 P%=0:0%=C%: [OPT OPT%
170 .Head
180 EQUD 0
190 EQUD Ini t
200 EQUD Final
210 EQUD 0
220
230 EQUD Title
240 EQUD Help
250 EQUD 0
260
270 . Title EQUS title$+" Voice"+CHR$0 :ALIGN
280 .Help EQUS title$+CHR$9+"1.FA ("+MID$ (TIME$, 5, 11) +") "+CHR$0
290
300 .Init \Set the voice up
310 STMFD Rl3!, {Rl4)
320
330 ADR RO,VoiceBase : MOV Rl,fO \ Install voice in next
340 SWI "XSound Install Voice" :BVS error \ free slot
350
360 STR Rl,slot:MOV RO,fV% 'Attaches channel V%
370 SWI "XSound AttachVoice": BVS error \ to new voice
380
390 LDMFD Rl3!, {PC)A

233

. . ·. ·.I

"··
Archimedes Operating System

400
. 410
'\ .· 420

. '· - 430
~·: . 440
. ~-··.· 450

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920

234

.slot EQUD 0

.Final \ Remove· the voice
STMFD R13!,(R14}

MOV Rl,#O:MOV R0,#V% .<-: ,Detaches channel
SWI "XSound AttachVoice":BVS error

LDR Rl,slot \ Removes voice
SWI "XSound RemoveVoice": BVS error \ from slot

LDMFD R13!,(PC}~

.error
ADR RO,ers:LDMIA R13!,(PC}
.ers EQUS "A probelm has occured"+CHR$0:ALIGN

.VoiceBase
B Fill
B Update
B GateOn
B GateOff
B Instance
LDMFD R13!, (PC}
LDMFD R13 ! I (PC}

\ Sound Voice Control Block (SVCB)
\ Fill code
\ Update code
\ Start code
\ Release code
\ Instantiate
\ Feature not supported
\ Feature not supported

EQUD VoiceName-VoiceBase

.VoiceName
EQUS title$+STRING$(32-LEN name$,CHR$0)
ALIGN

.len EQUD Sample_Size

.Instance
STMFD R13!, {R0-R4}

MOV R0,#0
MOV Rl,#O:MOV R2,#0
MOV R3,#0:MOV R4,#0
SWI "Sound_Configure"

LDR RO, [R3, #12]
ADR Rl,LogAmpPtr
STR RO, [Rl]

LDMFD R13!,(R0-R4,PC}

.LogAmpPtr EQUD 0

.Update
B Fill

\ any instance must use LogAmp table

\ reads sound conf

\ Level 1 pointer to Log-scale table

930
940
9SO
960
970
980
990

1000
1010
1020
1030
1040
lOSO
1060
1070
1080
1090
1100
1110
1120
1130
1140
llSO
1160
1170
1180
1190
1200
1210
1220
1230
1240
12SO
1260
1270
1280
1290
1300
1310
1320
1330
1340
13SO
1360
1370
1380
1390
1400
1410
1420
1430
1440
14SO

.Gateon
ADR R4,Wave%

ADR RS,len:LDR RS, [RS]
ADD RS,RS,R4

ADR R6,LogAmpPtr
LDR R6, [R6]

STR R4, [R9,#&10]
STR RS, [R9,#&14]
STR R6, [R9, 41&18]

.Fi11

LDR Rl, [R9, #&00]
LDR R4, [R9, #&10]
LDR RS, [R9,#&14]
LDR R6, [R9,#&18]
LDR R7, [R9,#&04]

\ SCCB
\ 00
\ 04
\ 08
\ oc
\ 10
\ 14
\ 18

Format
Amplitude
Pitch

Pointer to data
End of data
Location of LogAmp

AND Rl,Rl,#&7F
LDRB Rl, [R6,Rl,LSL #1]
MOV Rl,Rl,LSR #1
RSB Rl,Rl,#127

.Fi11Loop
CMP R4, RS
STRGE R4, [R9, #&10]
BGE GateOf f
]:FOR L=O TO 3:[0PT OPT%
ADD R7,R7,R7,LSL #16
LDRB RO, [R4,R7,LSR #24]
SUBS RO,RO,Rl,LSL #1
MOVMI R0,#0
STRB RO, [R12],Rll
] :NEXT: [OPT OPT%

ADD R4,R4,R7,LSR #24
BIC R7,R7,t&FF000000

CMP R12,R10

Voice Generator

\ Pointer-start of data

\ Length of data
\ End of data

\ Location of LogAmp

\ Store these
\ values in the
\ working registers

\ Passed
\ R9 Points to SCCB

\ Get volume
\ Pointer to data
\ End address of data
\ Location of LogAmp
\ pitch

\ Amplitude 0 to 127
\ get scaled volume

\ attenuation factor

\ Update pointer SCCB
\ No more sample data

\ Advance block pointer
\ Get data
\ Scale data

\ Store data in DMA buf

\ Update pointer

\ Fill DMA buffer

235

Archimedes Operating System

1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

236

BLT FillLoop

STR R4, [R9,#&10]

CMP
MOVLT
MOVGE
LDMFD

R4,R5
R0,#8
R0,#2
R13 ! I {PC}

.GateOff
MOV R0,#0
.FlushLoop
STRB RO, [R12],Rll
STRB RO, [R12],Rll
STRB RO, [R12],Rll
STRB RO, [R12],Rll
CMP R12,R10
BCC FlushLoop
MOV RO, #2
LDMFD R13!,{PC}

.Wave%
]:P%+=Sample Size: [OPT OPT%
.end -
) :NEXT
D%=P%
PRINT"Start convert ";

\ Update pointer in SCCB

\ Are we at the end ?
\ Voice remains active
\ Flush voice next time
\ Back to Level 1 handler

\ Flush DMA buffer

\ Store Os in DMA buffer
\ Flag to be flushed again

\ Wave table information

OSCLI "LOAD "+name$+" "+STR$-(Wave%+C%)
PRINT" converting ";
PROCconc:CALL convert
PRINT
OSCLI "SAVE "+mod$+" "+STR$-C%+"+"+STR$-D%
OSCLI "SETT. "+mod$+" FFA"
OSCLI "RMLOAD "+mod$
END

DEF PROCconc
DIM CO% &200:FOR OPT%=0 TO 2 STEP2:P%=CO%: [OPT OPT%
.destp EQUD Wave%+C%
.amm EQUD Sample_Size

.log tab
EQUS-STRING$(255,"F")
EQUD 00
ALIGN

.convert
STMFD R13!, {R0-R3,R14}
MOV R3,#0
ADR R2,log tab
.logcl -
SUB RO,R3,#&80
MOV RO,RO,LSL #24

Voice Generator

1990 SWI "Sound SoundLog"
2000 STRB RO, [R2,R3]
2010 ADD R3,R3,#l
2020 CMP R3,#&100 \Generate default 256 entry log table
2030 BCC logcl
2040 LOR Rl,destp
2050 LOR R2,amm
2060 ADR R3, log tab
2070 .cl -
2080 LDRB RO, [Rl] \ Converts sample data by using log table
2090 LDRB RO, [R3,R0]
2100 STRB RO, [Rl), U
2110 SUBS R2,R2,#l
2120 BPL cl
2130 LDMFD Rl3!,{R0-R3,PC}
2140) :NEXT
2150 ENDPROC

Listing 18.1. Voice Generator Module Creator.

10 REM >Listl8/2
20 REM (c) Felix Andrew 1988
30 REM Archimedes OS: A Dabhand Guide
40 REM
50 REM Creates a simple wavetable for use
60 REM with ModMaker
70
80 DIM data% 1024*10
90 DIM S (360)

100 FOR T%=0 TO 360
110 S(T%)=SIN(RAD(T%))*230/5
120 NEXT
122 MODE 8
130 ORIGIN 0,500
140 MOVE 0,-&80*2:PLOT 1,1280,0
150 MOVE 0, &80*2:PLOT 1,1280,0
152 PRINTTAB(3,3)"Generating a waveform"
160 FOR X%=0 TO 1024*10
170 Pl=(X%)MOD 360
180 P2=(X%*2)MOD 360
190 P3=(X%*10)MOD 360
200 A=SIN RAD(X% DIV 57)
210 data%?X%=((S(P2)+S(Pl)+S(P3))*A)+&80
220 PLOT 69, X%/8, ((data%?X%) -&80) *2
230 NEXT
240 OSCLI "SAVE Data "+STR$-data%+"+"+STR$- (1024*10)

Listing 18.2. Sound Sample.

237

19 ·Character Input/Output

Simple Input/Output
Some of the most fundamental operations provided by the Operating
System are those which allow it to get characters typed by the user and to
print characters on the display for the user to read. These functions are
essential to allow the user to communicate with the os and they are also a
vital component of all applications software.

The OS provides a sophisticated set of swrs which allows single-character
communication between the computer and the user through its display and
keyboard. Many of these routines are provided for compatibility with the
BBC MOS; others are new or improved facilities.

This section is devoted to the mechanisms for character input/output (r/o)
- it describes the basis upon which the os's character r/o is built and
examines the most useful of the many swrs that the OS provides.

Character Input
In communicating with the Operating System, and indeed with
applications programs, we need to be able to deal with anything from a
single keypress to multiple lines of text. The fundamental aspect of both of
these extremes is the character - a single unit which may be a letter of the
alphabet, a punctuation symbol, a control code and so on. Sequences of
characters are known to the os as 'streams' (think of the 'flowing' of
characters) and the os allows one of three possible input streams to be
active at any moment.

The three possible character input streams are:

• the keyboard itself
• the RS423 port input channel
• a *EXEC file

These streams are mutually exclusive: only one of them may be active at
any moment (because this is a single-user, single-tasking OS at present). So,
the most fundamental character input operation is to allow us to decide

238

Character Input/Output

where characters are coming from. Exactly this mechanism is provided by
one of OS_Byte SWis - the compatible equivalent of ""FX 2 under the BBC MOS.

OS_Byte (SWI &06) Function &02
Select Input Stream
This SWI takes a parameter in Rl which selects between the keyboard and
the RS423 port as follows:

Value
0
1
2

Source
Keyboard - with RS423 disabled
RS423
Keyboard - with RS423 enabled

It also returns the previous selection in Rl as either 0 or 1 (again relating to
the table above). The difference between the two keyboard source types is
that, when the RS423 port is enabled, characters will be received and
buffered by the RS423 port even though it is not selected as the current
input stream.

Getting Hold of Single Characters
Having selected which source of characters is in use, we actually need to
fetch the characters. Once again, BBC MOS compatibility obliges us to obey
certain rules. In particular, a SWI is provided called 'os_Readc' which
behaves in the same way as its BBC MOS counterpart (OSRDCH). os_Readc
waits for a character to be entered and then returns with its ASCII code.

OS_ReadC (SWI &04)
Wait for and Return an ASCII Character
No calling parameters are required. The SWI returns with RO containing
the ASCII code of the character and the Carry flag 'C' clear if it is valid. If
an ESCAPE condition occurs (eg, if the ESCAPE key was pressed) then the
carry flag is set and RO will contain the ASCII escape code &lB.

Alternatively, we may check to see if a key has been pressed without
waiting for one. This is provided by the BBC MOS compatible call os_Byte
&81 which reads a key within a time limit (which may be zero).

239 .

Archimedes Operating System

OS_Byte (SWI &06) Function &81
Return ASCII Key with Time Limit
On entry, this SWI requires Rl and R2 to contain a time limit (in
centiseconds) with the low byte in Rl and the high byte in R2 (this
arrangement is for BBC MOS compatibility). When the call returns, Rl
contains the ASCII code of the key pressed, or &FF if no key was pressed
within the specified time. Also, R2 will contain a flag indicating the result,
which will be zero if a valid key was pressed, &lB if an ESCAPE condition
occurred or &FF if a timeout occurred.

os_Byte &81, when supplied with a negative time limit, can also perform a
specific key scan function as it does under the BBC MOS. This is described
later. ·

Whole Lines of Characters
Because it is so common for a program to need to input a whole line of
characters at a time, a standard routine is provided to do so. In fact, two
routines are provided, one of which is BBC MOS compatible. It is preferable
that new software uses the latter, since the lifetime of the former is likely to
be limited.

The effect of these routines is to accept a sequence of characters from the
current input stream and store them in the input buffer. The Delete
character is dealt with in the usual way, viz. it is copied to the display and
removes the last character from the buffer. CTRL-U is also decoded to delete
the entire contents from the buffer and the displayed line accordingly. The
line may be terminated by entering RETURN, ENTER, CTRL-J or by pressing the
ESCAPE key. The line returned in the buffer always has a final ASCII 13
appended to it, regardless of the way in which input was actually
terminated.

The BBC MOS compatible form is the familiar OSWORD &00 call - it will read
a line of text entered by the user into a buffer. A number of frills are
provided too: we may limit the maximum and minimum ASCII codes of
characters placed in the buffer (to prevent control codes being included, for
example) and we may limit. the overall length of the line (to prevent our
buffer overflowing). The OS_ Word form of this routine is detailed opposite.

240

Character Input/Output
..,

~ OS_Word (SWI &07) Function &00
Read a Line from the Input Stream
On entry, this call needs to be provided with a parameter block of bytes.
The address of this block should be placed in Rl and should be arranged as
follows:

Position
Rl+O
Rl+l
R1+2
R1+3
R1+4

Contents
LSB of buffer address
MSB of buffer address
Maximum number of characters
Lowest permissible ASCII code
Highest permissible ASCII code

When the call returns, R2 will contain the length of the line entered (not
including the terminating character), and the Carry flag 'C' will be clear
normally and set if an ESCAPE condition occurred during input. The OS form
of this routine is SWI OS_ReadLine.

OS_ReadLine (SWI &OE)
Read a Line from the Input Stream
On entry, the same parameters must be supplied as for the os_Word call,
but they are packed into the registers slightly differently:

Register Contents
RO Pointer to buffer
R 1 Maximum number of characters
R2 Lowest permissible ASCII code
R3 Highest permissible ASCII code

On return, Rl will contain the length of the line entered, and the Carry flag
will normally be clear but set if an ESCAPE condition occurred.

Keyboard Control Functions
As well as the character and line input functions, a large number of
keyboard control calls are also provided to allow low-level modification of
the way the keyboard operates. Almost all of these calls are provided
through the os_Byte SWI and are, therefore, compatible with the BBC MOS.
Table 19.1 describes the calls supported and mentions where differences
between the BBC MOS and the OS exist.

AOS-P 241

Archimedes Operating System

OS_Byte
&04
&ED
&OB
&C4
&OC
&CS
&76
&78
&79
&7A

&81
&7C
&70
&7E
&B2
&CB
&C9
&CA
&08
&DB
&DC
&DD
&DE
&OF
&EO

Function
Cursor key functions
Read/write cursor key function
Write keyboard auto-repeat delay
Read/write keyboard auto-repeat delay
Write keyboard auto-repeat rate
Read/write keyboard auto-repeat rate
Force keyboard LEDs to correspond to flags
Simulate key depression
Keyboard scan
Keyboard scan from 16
(not for SHIIT, CTRL, ALT or the mouse)
Keyboard scan for specific key
Clear ESCAPE condition
Set ESCAPE condition
Acknowledge ESCAPE condition
Read/write keyboard semaphore
Read/write BREAK and ESCAPE controls
Read/write keyboard disable flag
Read/write keyboard status byte
Read/write function key length
Read/write TAB key character code
Read/write ESCAPE character code
Read/write translation of codes &CO-&CF
Read/write translation of codes &DO-&DF
Read/write translation of codes &EO-&EF
Read/write translation of codes &FO-&FF

Table 19.1. os_Byte swr calls.

The keyboard status byte contains a bit pattern which represents the
perceived state of the various shift keys for the os. These bits are arranged
as follows:

242

Bit
0
1
2
3
4
5
6
7

Meaning When Set
Incomplete ALT
SCROLL LOCK on
NUM LOCK off
SHIIT on
CAPS LOCK off
Always 1
CTRL on
SHIIT CAPS on

Character Input/Output

These four calls allow the interpretation of the range of codes from &CO to
&FF to be modified. The parameter in Rl is interpreted as follows:

Value Meaning
0 Ignore these codes
1 Expand to appropriate function key string
2 Precede the code with a null (O)
3-255 Generate (code MOD 16)+value in Rl

These codes can usually only be generated by receiving them through the
RS423 input channel or inserting them into the keyboard buffer. However,
four of the function keys can generate codes in this region:

Key Code +SHIFT +CTRL +SHIFT +CTRL
£10 &CA &DA &EA &FA
fl 1 &CB &DB &EB &FB
£12 &cc &DC &EC &Fe
Insert &CD &DD &ED &FD

Note that the code &CA for function key flO is inserted into the keyboard
buffer on reset to allow it to simulate the *KEY 10 function under BBC MOS.

&El Read/write function key interpretation
&E2 Read/write SHIFf+function key interpretation
&E3 Read/write CTRL+function key interpretation
&E4 Read/write SHIFf+CTRL+function

key interpretation

These four calls control the interpretation of codes in the range &80-&BF,
within which the main function keys, cursor keys and so forth appear. The
parameter impplied in Rl affects how the codes are treated:

Value Meaning
0 Ignore these codes
1 Expand to appropriate function key string
2 Generate a null (0) followed by code
3-255 Generate (code MOD 16)+value in Rl

The fundamental codes produced by the function keys are summarised
below:

Key Code
Print &80
fl &81
f2 &82
f3 &83
f4 &84

243

Archimedes Operating System

Key
f5
f6
f7
f8
f9
COPY

Left-arrow
Right-arrow
Down-arrow
Up-arrow

Code
&85
&86
&87
&88
&89
&8B
&8C
&80
&8E
&8F

Where one or both of the SHIFT and CTRL keys is pressed, a multiple of 16 is
added to the codes, so SHIFT+PRINT produces &90, CTRL+PRINT produces
&AO and SHIFT+CTRL+PRINT produces &BO.

The purpose of R1=2 in the previous table is to allow ISO standard foreign
characters to be dealt with correctly and processed separately from
function keys. When permitting the entry of ISO characters, it is prudent to
set the function keys to this mode in order that they may be distinguished
from foreign characters with the same code.

&ES Read/write ESCAPE key status
&E6 Read/write ESCAPE effect
&EE Read/write numeric keypad code layout

Note that the codes generated by the numeric keypad vary according to
whether the NUM LOCK key is lit or not - consult the Programmer's
Reference Manual for more information.

Character Output
Just as there are several character input streams, so there are several
output streams. The four main output streams are:

• The VDU stream, which drives the display
• The RS423 port output channel
• The printer stream
• The *SPOOL file (when activated)

The VDU stream accepts sequences of characters and either displays them,
or uses them to control character output. Besides the many text and
graphics functions the VDU drivers provide, they also allow control over
whether or not characters are sent to the printer stream. The various 'VDU

244

Character Input/Output

codes' which control these effects will be familiar to users of the BBC MOS
and are documented extensively in the Archimedes User Guide.

The RS423 port output channel can be used to output characters in one of
two ways: it may either operate as an adjunct to the VDU stream, or it may
be driven by the printer stream if a serial printer is to be connected. These
two options are discussed below. ·

Finally, the spool file makes a copy of whatever is sent to the VDU stream in
a specified file. This allows sequences of VDU codes to be 'recorded' and
subsequently 'replayed' using *PRINT (which takes bytes from the file and
sends them directly to the VDU drivers).

Selecting Which Output Streams are to be Used
A most important output-related call is the one which selects which output
stream(s) are to be used. Of course, unlike the input streams, more than
one output stream may be selected at once so, for example, we may see
results both displayed and printed. The selection of output streams is
effected by a number of controls, the most important being the BBC MOS
compatible call OS_Byte &03.

OS_Byte (SWI &06) Function &03
Select Output Streams
On entry, the call requires the bottom byte of Rl to contain a pattern of bits
to select the required combination of output streams. These bits are
interpreted as follows:

Bit
0
1
2
3
4
5
6
7

Meaning if Set
RS423 output enabled
VDU stream disabled
VDU printer driver disabled
Non-VDU printer driver enabled
Spooling disabled
Use VDUXV instead of VDU drivers
Printer disabled except for VDU l,n
Not used

The default setting of these bits is all zero, meaning that the VDU drivers,
the VDU printer drivers and spooling are all enabled. The exact inter­
pretation of these various bits is described in the relevant parts of the rest
of this section.

245

Archimedes Operating System

Another os_Byte Call - function &EC - may be used to read/write this
setting in the normal BBC MOS way.

Selecting the VDU Stream
The VDU stream is the fundamental route through which most characters
are sent. The VDU driver software accepts characters from the VDU stream
and either displays them (in the case of printable characters), acts upon
them (in the case of control codes) and/ or sends them on to the printer
(when printing has been enabled).

When bit one of the output select byte is set, the VDU stream is completely
disabled, preventing any characters from being displayed or being sent to
the printer. ·

When bit five is set, the os calls to the VDU drivers are replaced by calls
through the VDU extension vector (VDUXV) to allow replacement VDU
drivers to be installed. See the chapter on vectors (Chapter 20) for more
information.

Selecting the RS423 Output Stream
Characters may be sent to the buffered Rs423 output stream in one of two
ways:

1.

2.

When bit 0 of the output select byte is set, characters sent to the
VDU drivers are duplicated into the Rs423 output buffer and then
transmitted under interrupt control of the Rs423 hardware in the
usual way.

Alternatively, an Rs423 printer may be selected using the printer
selection call (see later) in which case control of whether
characters are sent to the output channel is handed over to the
printer controls discussed below.

Selecting the Printer Stream
Usually, characters to be sent to the printer pass through the VDU drivers.
Two control codes are used to tell the VDU drivers whether to pass on
characters to the printer: one of them turning the printer stream on and the
other turning it off. However, the output select bits have the following

· overriding effects:

• When bit two is set, no characters will be sent to the printer at all.

246

Character Input/Output

• When bit six is set, characters may only be sent to the printer
using the VDU 1,n sequence (this requires the VDU drivers to be
enabled).

• Finally, when bit three is set, all characters sent to the VDU
drivers are duplicated to the printer - regardless of whether the
appropriate codes have been sent to the VDU drivers to enable
printing.

Several different kinds of printer may be attached to Archimedes com­
puters; the call os_Byte &OS allows one of the alternatives to be chosen.

OS_Byte (SWI &06) Function &05
Select Printer Driver
On entry, this call takes a parameter in Rl which indicates the chosen
printer driver. The possible values are shown below:

Value Printer Driver Selected
0 Printer sink (characters discarded)
1 Parallel (Centronics) printer
2 RS423 output channel printer
3 User printer
4 Econet network printer
5-255 Other user printers

The previous setting is placed in Rl on return from this call. It corresponds
exactly to its BBC MOS equivalent, as does the associated os_Byte &FS
which allows the current setting to be read.

The following os_Bytes may also be used in a BBC MOS compatible way:

&06 Write printer ignore character
&F6 Read/write printer ignore character
&B6 Read/write NOIGNORE status - bit 7 set for

'no ignore' character

Selectirig the Spool File Stream
Initially, spooling of printed output must be selected by issuing a *SPOOL
command to open the spool file. Once this has been done, characters
subsequently sent to the VDU drivers will be duplicated into the selected
spool file until spooling is turned off again.

247

Archimedes Operating System

However, bit four of the output select byte can be set to temporarily disable
spooling without actually closing the file etc. This may be useful if you do
not want graphics sequences sent to the spool file, for example.

An os_Byte call is provided to read the file handle of the current spool file,
allowing you to take control of the spooling process at a lower level, if
desired.

OS_Byte (SWI &06) Function &C7
Read/Write Spool File Handle
On entry RI and R2 should be set as usual for this type of call, viz:

To read the current handle:

Rl=O, R2=255

with the result returned in RI.

To write the handle:

Rl=new handle (supplied by os_Find), R2=0

with the new setting returned in RI.

Character Output to the Selected Streams
Having established how to select the various output streams, we now need
to be able to actually send characters to the selected stream(s). The most
fundamental call to achieve this is the BBC MOS compatible call os_writec,
which is equivalent to the BBC MOS call OSWRCH.

OS WriteC (SWI &00)
Write a Character to the Output Streams
On entry the character should be in the bottom byte of RO. The character is
sent to all of the currently selected output streams. No result is returned.

120 MOV RO,#ASC"A"
130 SWI "OS WriteC"

There is also a range of SWI numbers, which have the same effect as calling
os_writec but display an ASCII character whose number is determined from
the SWI number. The range of SWI numbers runs from &100 to &lFF, with
the ASCII character whose code is the SWI number less &100 being printed,
ie, SWI &120 displays a space and so forth.

248

OS_ Writel (SWis &100 to &lFF)
Write Specified ASCII Character

Character Input/Output

This range of SWis takes no entry parameters and returns no results. An
example of these SWis is provided at the end of the chapter (listing 19.1).
This call is invaluable for debugging, since it allows the programmer to
output a character when the execution of the program reaches the SWI
instruction without any of the registers being corrupted.

Additionally, a number of calls are provided to output multiple character
'strings'. These strings may be in one of two forms: either immediately
following the SWI instruction (an 'in-line' string) and terminated by a zero,
or at an arbitrary location in memory, again terminated by a zero. It is
crucial, in both cases, to ensure that the string begins on a byte boundary,
so it is wise to use the ALIGN directive in the ARM BASIC assembler where
appropriate.

OS_ WriteS (SWI &01)
Write an 'In-line' String to the Output Streams
The call takes no entry parameters because the string to be written begins
immediately after the instruction. It must be terminated by a zero.
Execution of instruction begins at the next word after the end of the string.

160 SW! "OS Writes"
170 EQUS "This is a test"
180 EQUB 0
190 ALIGN

There is a slight restriction to be wary of when using os_ WriteS. It is
possibly to make any ARM instruction execute conditionally by suffixing
various condition codes to it. It may be thought, therefore, that we could
write code like the following.

10 SW! "OS ReadC"
20 CMP RO, #ASC"y"
30 SWIEQ "OS Writes"
40 EQUS "Option selected"
50 EQUB 0
60 ALIGN
70
80 < rest of program >

The idea is for the os_ WriteS instruction to write "Option Selected" only
when a 'y' has been previously entered.

249

Archimedes Operating System

It is certainly true that if a 'y' is not entered, the SWI instruction will not
execute. However, in this case, the ARM program counter will not be
manipulated by the SWI to start execution after the string which follows it.
The result of this is that the ARM will continue execution immediately after
the SWI "os_ WriteS" instruction itself. It will attempt to interpret the
characters in the string as ARM instructions and execute them! This can
cause some spectacular crashes and the cause of the failure is often hard to
track down.

In practice, therefore, a conditional execution suffix should never be added
to a sw1 "os_ WriteS" instruction.

OS_ WriteO (SWI &02)
Write an Indirect String to the Output Streams
On entry, RO must point to the start of the string. The string must be
terminated by a zero.

220 ADR RO,a string
230 SWI "OS WriteO"

Where the string is of fixed length an alternative form may be used:
os_WriteN (SWI &46) - write a fixed length string to the output streams.
On entry, RO must point to the start of the string and Rl must contain the
number of bytes to write (not necessarily the same as the length of the
string).

220 FOR i%=1 TO LEN a$
230 SYS "OS WriteN",a$,i%
240 SYS "OS-NewLine"
250 NEXT -

Because text printing is such a common activity, the os contains a primitive
text formatting call which deals with common control codes: this is the SWI
os_PrettyPrint. os_PrettyPrint takes a string and prints out each
character, translating any embedded carriage returns (ASCII 13), tabs
(ASCII 9) and 'hard spaces' (code 31). The Archimedes usually treats
carriage returns as simply meaning 'move back to the start of the line'
without moving the printing position down one line as, for example, the
BBC MOS did. Tabs are expanded to align text to the start of the next eight­
character column, and text which overflows a display line is 'word­
wrapped' at the next space, unless it is a 'hard' space in which case it is left
alone. The combination of these translation facilities is useful, if a little
simplistic.

250

OS_PrettyPrint (SWI &44)
Format and Print an ASCII String

Character Input/Output

On entry, RO must point to the start of a zero-terminated string. The text
of the string is translated, where necessary, and all characters sent to
os_WriteC. No results are returned.

The last useful os output SWI simply prints a carriage return (ASCII 13)
followed by a line feed (ASCII 10), so it is aptly named os_NewLine.

OS_NewLine (SWI &03)
Move Print Position to Start of Next Line
The call takes no parameters and returns no results.

Listings
10 REM >List19/l
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 DIM buffer 100,code% 2000
70 FOR pass%=0 TO 3 STEP 3
80 P%=code%
90 [OPT pass%

100 .start
110 . swiO
120 MOV RO,JIASC"A"
130 SWI "OS WriteC"
140
150 .swil
160 SWI "OS Writes"
170 EQUS "This is a test"
180 EQUB 0
190 ALIGN
200
210 . swi2
220 ADR RO, a string
230 SWI "OS WriteO"
240
250 . swi3
260 SWI "OS NewLine"
270
280 .swi4
290 SWI "OS Writes"
300 EQUS "Press a key ... "
310 EQUB 0
320 SWI "OS ReadC"

251

Archimedes Operating System

330 SWI "OS WriteC"
340 SWI "OS-NewLine"
3SO
360 .swiS
370 ADR RO, a command string
380 SWI "OS CLI" -
390
400 .swiE
410 SWI "OS Writes"
420 EQUS "Enter a string, followed by Return."
430 EQUB 0
440 ALIGN
4SO ADR RO, buffer
460 MOV Rl,#100
470 MOV R2, #32
480 MOV R3,#126
490 SWI "OS ReadLine"
SOO ADD R4,RO,Rl
SlO MOV RS, #0
S20 STR RS, [R4]
S30 SWI "OS WriteO"
S40 SWI "OS-NewLine"
sso
S60 .swi21
S70 MOV RO, #16
S80 ADR Rl,a number string
S90 SWI "OS_ReadUnsTgned"
600
610 .swi23
620 ADR Rl,buffer
630 MOV R3, #0
640 .swi23loop
6SO ADR RO, a variable name
660 Mov R2, Hoo -
670 MOV R4, #3
680 SWI "XOS ReadVarVal"
690 MOVVSS PC,R14
700 MOV RO,R3
710 SWI "OS WriteO"
720 SWI "OS-NewLine"
730 B swi23Toop
740
7SO .a string
760 EQUS "This is a silly little string"
770 EQUB 0
780 ALIGN
790
800 .a command string
810 EQUS "EX $"
820 EQUB 0
830 ALIGN
840
8SO .a number_string

252

Character Input/Output

860 EQUS "&4DE23"
870 EQUB 0
880 ALIGN
890
900 .a variable name
910 EQUS "Alias$*"
920 EQUB 0
930 ALIGN
940]:NEXT pass%
950 PRINT' "Press Return to test .. "
960 REPEAT UNTIL GET=l3
970 CLS
980 CALL start
990 END

10 REM >Listl9/2

Listing 19.1. Simple 1/0.

20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Take a string and for each of its characters,
70 REM call SWI &100 plus the value of the character.
80
90 a$="This is a test"+CHR$13+CHR$10

100 FOR char%=1 TO LEN(a$)
110 SYS &100+ASC(MID$(a$,char%,l))
120 NEXT
130 END

Listing 19.2. Writel example.

10 REM >Listl9/3
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 MODE 0
70
80 REM Make a$ a tabulated string and print it 'prettily'.
90

100 a$="THIS"+CHR$9+"IS"+CHR$9+"TEST"+CHR$13+"and"+CHR$9+
"so"+CHR$9+"is"+CHR$9+" this."

110 SYS "OS PrettyPrint",a$
120 PRINT -
130
140 REM Read data and plot it.

253

Archimedes Operating System

150
160 REPEAT
170 READ m%,x%,y%
180 SYS "OS Plot",ABS(m%),x%,y%
190 UNTIL m%<0
200
210 REM Print out substrings of a$
220 FOR i%=1 TO LEN a$
230 SYS "OS WriteN",a$,i%
240 SYS "OS-NewLine"
250 NEXT
260 END
270
280 DATA 4,500,500
290 DATA 5,700,500
300 DATA 5,700,700
310 DATA -5,500,500

254

Listing 19.3. PrettyPlot.

20 ·Vectors

Just as the BBC MOS made extensive use of vectors, so the Archimedes os
does too - allowing os routines to be bypassed, if necessary. The
mechanism for using vectors has been rationalised so that a consistent
view of vector handling is provided to all software.

Before looking at the details of the software vectors provided by the
Operating System, it is worth noting that the ARM itself also uses vectors.
These are completely distinct from the Operating System ones and are
called the hardware vectors.

The Hardware Vectors
The hardware vectors are a series of locations fixed in memory which the
ARM will jump to if it encounters a situation which it cannot itself directly
deal with. For example, the user may be attempting to execute an
unknown instruction or to access some non-existent memory location. In
these and other similar situations, the ARM breaks off its current task and
begins execution at the appropriate hardware vector. When the system
wasinitialised, the OS will have placed branch instructions in each of these
vectors so that the ARM will jump to a suitable piece of code within the
Operating System to handle the situation which is causing the problem.

The various hardware vectors are listed below in table 20.1:

Vector Location
&00000000
&00000004
&00000008
&OOOOOOOC
&00000010
&00000014
&00000018
&OOOOOOlC

Called in response to
Machine RESET
Unknown Instruction
Software Interrupt (swr)
Pre-fetch Abort
Data Abort
Address Exception
Interrupt occurring (IRQ)
Fast Interrupt occurring (FIRQ)

Table 20.1. The Hardware vectors.

255

Archimedes Operating System

It is theoretically possible for users to place their own branch instruction in
one of the hardware vectors. This would allow some user code to be
executed in the corresponding circumstance. However, this is a very risky
occupation, and there is usually an easier to use facility provided by the
Operating System. For example, to add extra SWI instructions we do not
need to replace the SWI hardware vectors as the OS provides an 'Unknown
swr software vector.

One common reason for manipulating the hardware vectors is to change
the machine's response to memory access faults. If some non-existent
memory is accessed then one of the memory fault vectors, &OOOOOOOC to
&00000014, is called. The normal effect of this is for the Operating System
to report a fatal error and stop executing the current task.

In some cases, for example when writing a memory editor, this is not a
very desirable thing to happen. It would be better to simply warn the user
that a particular location is invalid and allow editing to continue of the rest
of memory.

The subroutine presented below can do exactly this. On entry to the
routine, RO should contain the address of the memory location to be read.
On exit, RO will contain the data byte found at this location or -1 if the
access to the memory location caused a fault. Note that, the original
contents of the hardware vectors are preserved on entry and restored on
exit. This is vital, so that a real memory fault at some later time does not
cause the subroutine to be suddenly re-entered!

10 REM >List20/1
20 REM Archimedes OS: A Dabhand Guide
30 REM (c) Mike Ginns 1988
40 REM Example of manipulating the hardware vectors
50 REM
60 REM
70
80 DIM protected memory read 1024
90 FOR pass = 0 TO 3 STEP 3

100 P% = protected memory read
110 [- -
120 OPT pass
130
140 \ On entry RO = address of byte to read
150 \ On exit RO = contents of location
160 \ OR RO = -1 if memory address invalid
170
180 \ Enter SVC mode. May not be able to access hardware vectors
190 \ from user mode in future operating systems
200
210 SWI "OS EnterOS"
220

256

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

AOS-Q

Vectors

MOV R3,#0
LDR Rl, [R3,#&10)
LDR R2, [R3,#&14)
STMFD R13!, {Rl,R2}

\ Old contents of data abort vector
\ Old contents of exception vector
\ Preserve previous contents on stack

\ Instruction pattern for 'ANDNV RO,RO,RO' (NOP)

MOV Rl,#&FOOOOOOO
STR Rl, [R3,#&10) \Place 'NOP' in data abort vector

\ Construct suitable branch instruction to jump to the
\ memory fault code from the exception vector

ADR Rl,memory fault \ Routine called if illegal access
SUB Rl,Rl,#20+8 \Vector at &14 + 8 for PipeLine
MOV Rl,Rl,LSR#2 \ Should be a word address
ORR Rl,Rl,#%11101010<<24 \ Include branch op with address

STR Rl, [R3,#&14) \ Store branch in exception vector

\ Try to read the byte of memory, the address of which is
\ in register RO. If this results in a memory fault,
\then the 'memory_fault' code is executed.

LDRB RO, [RO) \ Access memory location
.after load instruction \ Reached even if memory fault

LDMFD R13!,{Rl,R2}
MOV R3,#0

\ Get original vectors from stack

STR Rl, [R3, #&10)
STR R2, [R3, #&14)

TEQP PC,#0
MOVNV RO,RO

MOV PC,R14

\ Restore data abort vector
\ Restore exception vector

\ Back to user mode

\ Return to caller

\ This code is only executed if a memory fault occured when
\ the specified location was accessed. It places -1 in RO
\ then jumps back to the instruction immediately after the
\ LDR instruction.

.memory fault
MVN R0,#0 \Move -1 into RO
B after load instruction

l
NEXT

257

Archimedes Operating System

760
770
780 REPEAT
790
800 PRINT'
810 INPUT "Enter address of byte to be examined " addr$
820 PRINT
830 A% = EVAL(addr$)
840 result = USR(protected_memory_read
850
860 IF result = -1 THEN
870 PRINT "Address invalid"
880 ELSE
890 PRINT "Data at this location is " ;result
900 ENDIF
910
920 UNTIL FALSE

Listing 20.1. Manipulating the hardware vectors.

The Operating System Software Vectors
The OS software vectors may be intercepted much more easily and safely
than the hardware ones and should be used in preference wherever
possible. A number of swrs are provided to help in manipulating the
vectors. The most important are os_Claim and os_Release.

The procedure for using vectors is as follows. A call to os_C!aim will attach
your code to the front of the chain of claimants for that particular vector.
You may then either, deal with a call to the vector and pass it on, or 'hold'
the vector and prevent other claimants from being called. The latter
situation must obviously be used with considerable care, since holding an
important vector such as one of the interrupt vectors or the error handler's
vector is likely to cause trouble.

The vectors that the os uses are summarised in table 20.2 below, together
with the swrs and operations which are indirected through them.

Name Number Function
ErrorV &01 os_GenerateError
IrqV &02 Normal interrupt vector
Writecv &03 os_ WriteC
Readcv &04 os_ReadC
CliV &05 OS_CLI
ByteV &06 os_Byte
WordV &07 os_Word

258

Name
FileV
ArgsV
BGetV
BPUtV
GBPBV
FindV
ReadLineV
FSControlV
EventV
InsV
RemV
CnpV
UKVDU23V
UK SW IV
UKPLOTV
MouseV
VDUXV
TickerV
UpcallV

ChangeEnvironmentV

Number
&08
&09
&OA
&OB
&OC
&OD
&OE
&OF
&10
&14
&15
&16
&17
&18
&19
&lA
&lB
&lC
&10
&lE

Function
os_File
os_Args
os_BGet
os_BPut
OS_GBPB
os_Find
os_ReadLine
OS_FSControl
Event vector
Buffer insertion
Buffer removal
Buffer count/purge
Unknown VDU 23 code
Unknown SW!
Unknown VDU 25 code
os_Mouse
VDU extension
Centisecond clock ticks
os_UpCall
os_ ChangeEnvironment

Table 20.2. The os Vectors.

Writing Code which Intercepts Vectors

Vectors

Code which intercepts vectors should, ideally, behave as much like the
normal vector routine as possible. So, most or all registers should be
preserved, the stack should be left uncorrupted, the processor mode left
unchanged and so forth. Where SWis are involved, it is important to
preserve the contents of Rl4 on the stack as it will otherwise be corrupted.

Vector handling code returns, either by intercepting the call or by passing it
on to the previous claimant. To intercept the call, return using:

LDMFD Rl3!, {PC)

so as to retrieve the address placed there by the os. To pass on the call,
copy the contents of R14 on entry back into the PC using:

MOV PC, R14

(assuming R14 is still valid - if you have preserved R14 elsewhere then
clearly a different mechanism will be needed.)

259

Archimedes Operating System

SWis Which Deal with Vectors
The most fundamental swrs relating to vectors are os_Ciaim and
os_Release - they allow you to attach or detach your routine from the
front of the list of claimants for a given vector.

OS_Claim (SWI &lF)
On entry, the vector number to be intercepted should be placed in RO (taken
from the list above), the address of your routine in Rl and a pointer to the
private workspace for the routine in R2. The private workspace pointer
allows R12 to be initialised where the claimant is a module.

3380
3390
3400
3410
3420
3430
3440
3450
3460

MOV R0,#&14
ADR Rl,myinsv
SWI "OS Claim"
MOV R0,1&15
ADR Rl,myremv
SWI "OS Claim"
MOV R0, 1&16
ADR Rl,mycnpv
SWI "OS Claim"

;Buffer insert vector
;Use address of new routine
;and claim vector
;Buffer remove vector

;Buffer count/purge vector

No results are returned by this call.

OS_Release (SWI &20)
This SWI takes the same parameters as os_claim and removes the specified
claimant from the list associated with the specified vector - preventing
subsequent calls to it. The printer buffer similarly releases the vectors.

3570 MOV R0,#&14 ;Buffer insert vector
3580 ADR Rl,myinsv ;Extra entry
3590 SWI "OS Release" ;Release
3600 MOV R0,1&15 ;Buffer remove vector
3610 ADR Rl,myremv
3620 SWI "OS Release"
3630 MOV R0,#&16 ;Buffer count/purge vector
3640 ADR Rl,mycnpv
3650 SWI "OS Release"

OS CallA Vector (SWI &34)
This SWI calls the vector whose number is in R9 on entry, the parameters
specific to the vector being provided in RO to R8. The SWI is useful for
calling routines which have no entry point other than through the vector,
eg, lnsV. Listing 20.2 is an example of the use of this SWI.

260

Vectors

10 REM >List20/2
20 REM by Nicholas van Someren
30 REM for the Dabhand Guide to the Archimedes OS
40 REM (c) Copyright AvS and NvS 1988
50
60 DIM code% 100
70 P%=code%
80 [
90 .start

100 MOV R9,#&16 ;Count and purge vector
110 MOV Rl,#3 ;Printer buffer
120 MOV R3, #0 ;Count rather than purge
130 MOVS R4,Rl,LSL fl ;Ensure carry is clear
140 SWI "OS CallAVector"
150 MOV RO, Rl ; Put the count in RO
160 MOV PC,Rl4
170 l
180 REM Send something to the printer.
190
200 VDU 2
210 PRINT "HELLO"
220 VDU 3
230
240 REM Read the count, clear the buffer, then read the
250 REM count again.
260
270 PRINT "Before clearing the buffer:"USR code%
280 *FX 15
290 PRINT "After clearing the buffer: "USR code%

Listing 20.2. Using os_CallAvector.

In some cases it will be useful for a vector to be intercepted after the default
Operating System routine has been called. This is not directly possible, but
can be achieved by using some tricky coding. Acorn recommend the follow­
ing code fragment for this purpose:

.intercept code
STMFD Rl3 !-;-{R9}
ADR R9,continue after +mode
STMFD Rl3!,{R9,Rl2}
MOV PC,Rl4
LDMFD R13!,{R9,R12}
.continue after
< Code to-execute after default routine has been

called should be placed here >
LDMFD Rl3 ! , {PC}

The code should be linked to the vector by intercepting it in the normal way.
The routine places a dummy return address on the stack and then calls the

261

Archimedes Operating System

default vector routine. This routine would normally return directly to the
main program which called the vector in the first place. However, because
we have modified the stack, it actually returns back into our code. We can
then do any processing required before returning directly back to the vector
caller ourselves.

Remember that the default routine will probably return results in the
registers or the flags. These are available to our routine to modify before
passing them back to the caller. Care must be taken to preserve any results
required. This is particularly easy to overlook if the results are returned in
the status flags. Listing 20.3. is a trivial example of intercepting a vector. It
intercepts the Reade vector which is called each time a character is read
from the input stream. Before reading the character it prints a "*" as a
'prompt'. The result is that a '*' is output before each character read in.

10 REM >List20/3
20 REM Example of Intercepting a vector
30 REM The Reade vector
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Mike Ginns 1988
60 REM
70
80
90 DIM Reade intercept 1024

100 . P%= Reade-intercept
110 [-
120
130 STMFD Rl3!,{Rl4}
140 SWI 256+42
150 LDMFD Rl3!,{R14}
160 MOVS Pe,R14
170 l
180
190 SYS "OS_elaim",4,Reade_intercept,O

Listing 20.3. Intercepting ReadC.

262

21 · Interrupts and Events

Interrupts allow the flow of instruction processing to be diverted (usually
temporarily) as a result of an external signal. The ARM CPU caters for two
levels of interrupt - normal Interrupt ReQuests (IRQs) and Fast Interrupt
reQuests (FIQs), each of which has a set of 'shadow' registers to allow low
interrupt lat~ncy. Each kind of interrupt may be selectively enabled or
disabled by setting the flag associated with that particular interrupt type in
the status part of the ARM PC.

When an interrupt is received, the CPU finishes the execution of the current
instruction and saves the PC in the link register R14 associated with the
particular interrupt. It then disables the relevant interrupt, by setting the
relevant flags, and calls the interrupt service routine by jumping through
the appropriate vector.

The two classes of interrupt are treated slightly differently: since FIQs are
designed for very fast operations, their vector appears last in the hard­
ware vector table so that a branch is not necessary. The FIQ code must
therefore reside in the space between the hardware vector at &lC and
address &FC so as not to corrupt the OS wprkspace beyond &Fe.

The interrupt service routine needs to determine which device has caused
the interrupt and then deal with it as necessary. Clearly this is entirely
device dependent. Finally, the interrupt service routine needs to return to
the point of interruption, which is achieved by the following instruction:

SUBS PC, R14, #4

(The offset of four is applied because the value in R14 is ohe instruction
ahead of the actual instruction to execute).

Usually, you will not need to create interrupt service routines of your own
because the os provides a well-defined system for passing unknown
interrupts around to applications using the vector claim call os_Claim,
which was discussed earlier.

263

Archimedes Operating System

Good Behaviour
In general, interrupt routines should keep interrupts disabled (the default
state) while being executed. This is to prevent the service routine from
being called again before it has finished dealing with the current interrupt.

Most SWis may safely be called from within interrupt routines, provided
that the contents of R14_svc are saved before the call. Acom recommends
the following code to do this:

MOV R9, PC
ORR RB, R9, #3
TEQP RB, #0
MOVNV RO, RO
STMFD R13 ! , {R14}
SWI swi number
LDMFD Rl3!, {R14}
TEQP R9, #0
MOVNV RO, RO

;save the current PC & mode in R9
;use R9 to make RB a supervisor version
;use RB to change mode
;no-op ** REQUIRED **
;stack the supervisor R14
;call the SWI
;get R14 back
;and restore the original state
;no-op ** REQUIRED **

The no-op instructions are needed because changing processor mode can
change register banks and the result of access to banked registers is not
defined for one cycle.

Obviously, it is silly for FIQ service routines to call SWis as this pretty much
defeats the purpose of using FIQs.

Switching Interrupts On and Off
It is possible to globally enable and disable interrupts by means of the SWis
os_IntOn and os_IntOff which neither take nor return any parameters.
Clearly the use of these SWis should be avoided, as they have marked (and
usually undesirable) effects on the operation of the OS. An example of the
use of these SWis is given below in listing 21.1.

10 REM >List21/1
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 19BB
50
60
70 REM Turn interrupts off and loop for a while.
BO
90 SYS "OS IntOff"

100 PRINT"Testing
110 T%=TIME
120 FOR x=l TO 100000
130 NEXT
140

264

Interrupts and Events

150 REM Turn interrupts on again.
160
170 SYS "OS IntOn"
180
190 PRINT"That seemed to take "; (TIME-T%) /100;" seconds."

Listing 21.1. Turning interrupts on and off.

The Main Interrupt Vector
It is very unlikely that you will need to intercept the IRQ interrupt system at
a lower level than that provided by the normal Operating System vectors.
However, if it is vital that your routine is called before any other when an
interrupt occurs, then the primary interrupt vector can be intercepted.

This vector is a sort of intermediary between the hardware interrupt
vectors and the Operating System. It is located in memory at address
&100. When an IRQ interrupt occurs, the Operating System jumps to a
routine, the address of which is stored at location &100.

Normally, the default routine jumped to from this vector is the Operating
System's first level interrupt handler (FLIH). This is responsible for
determining the source of the interrupt and calling an appropriate
handling routine in the os.

If users place the address of their own code at location &100, then this will
be executed, instead of the default routine, whenever an IRQ interrupt
occurs.

It is obviously a very drastic action to try to replace the entire Operating
System interrupt handling routine. For this reason, most intercept code
will perform its function and then jump on to the default routine. It will,
therefore, have to remember the default address which was stored at
location & 100 when it was initialised.

Events
Events are essentially 'sanitised' versions of interrupts. They are used to
inform the user whenever the Operating System performs or detects some
significant task or occurence. For example, a key is pressed, a buffer
becomes empty or a timer expires. The user may specify that he/she is
interested in a particular event. The Operating System will then inform
when the event occurs by jumping, via the event vector, to a section of code
supplied by the user.

265

Archimedes Operating System

Many events are produced in response to the Operating System detecting
an interrupt from the hardware. They allow the user to take action when
these significant happenings occur, without having to intercept the
interrupt system and deal with the hardware itself.

Twelve events are currently defined for the OS and are detailed in table
21.1. You will notice that most of these events are similar to those used by
the BBC MOS.

Event Cause of the Event entry information
Number Event (RO = Event number)
0 An output Buffer has

become empty
Rl = Buffer number

1 ~ut buffer was already Rl = Buffer number
R2 = Character which couldn't

be inserted
2 A Character has been placed R2 = ASCII value of new

in an input buffer character
4 Vsync: scanning beam has

reached bottom of screen
5 Interval timer crossed zero
6 Escape condition detected
7 RS423 receiving error Rl =Serial device status

R2 = Character received
8 Event generated by Econet
9 Event generated by the user
10 Mouse button has changed Rl = Mouse X co-ordinate

state R2 = Mouse Y co-ordinate
R3 = Mouse button state
R4 = Lower 4 bytes of the real

time centisecond value
11 Key Pressed/Released Event Rl = 0 if key pressed

Rl = 1 if key released

12 A sound event has occurred
R2 = Key matrix number
Rl =Sound level (always 2)
R2=0

Table 21.1. The 12 os Events.

In order to make use of an event, we must first intercept the event vector.
The event vector is number &10 and may be intercepted, like any other,
using sw1 "os_Claim".

266

Interrupts and Events

After the vector has been intercepted the attached routine will be called
whenever an enabled event occurs. To allow it to differentiate between
events, the routine is entered with the event identifying number in RO.
Other parameters are passed in various registers as described above.

To enable an event, so that when it occurs the event vector is called, we use
the following *FX command.

*FX I4,<n>

Where 'n' is the number of the event which we want to enable. Similarly to
disable an event again, we use:

*FX I3,<n>

Obviously, in an assembler program, the SWI os_Byte version of these two
*FX's would be used. For example, to enable event number four we could
use the following code:

MOV RO,itl4
MOV Rl, #4
SWI OS_Byte

\ Using OSBYTE 14
\ Event number 4
\ Call OSBYTE

On exit from either OS_Byte, RI indicates the previous state of the event in
the following way:

RI = 0 Event was previously disabled
RI > 0 Event was previously enabled

As stated previously, most events are triggered by the Operating System
detecting an interrupt. The same rules concerning the writing of interrupt
handling routines also apply to writing event handlers.

To return after an event routine is completed, we simply use:

MOVS PC,R14

This is possible as the OS will have set up a return address in RI4 for use. It
will then deal with the more complex problem of returning to the
interrupted code. Note that, like interrupt routines, event handlers must
preserve RI4_svc before using a SWI instruction. The code to do this was
given earlier in the interrupt section.

The user can generate his/her own event by using:

SWI "OS GenerateEvent"

On entry, RO should contain the number of the event which you require to
generate. Event number 9 has been specifically reserved as a 'User Event',
RI,R2,R3 etc can contain event parameters to pass to the event handling

267

Archimedes Operating System

routine through the event vector. Listing 21.2 is an example of an event
driven routine. It sets up the event vector and then enables event number
four. This is the screen vertical sync event (VSync) and means that the
routine is entered 50 times a second synchronously with the fly back period
of the screen display.

All that the routine does, when called, is to increment the co-ordinates of
the mouse pointer. If the pointer reaches the edge of the screen then the
increment is reversed and the pointer moves off in the opposite direction.

The result of this is that the mouse pointer moves and bounces around the
screen under interrupt/ event control. The user is free to enter a command
or do what he/she likes as if the process was not running.

10
20
30
40
50

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

268

REM >List21/2
REM Example of using events
REM Bouncing mouse pointer
REM Archimedes OS: A Dabhand Guide
REM (c) Mike Ginns 1988

DIM Vsync event 1024
FOR pass ~ 0 TO 3 STEP 3
P%= Vsync_event

OPT pass .
CMP RO, i4
MOVNES PC,R14

\ Check Vsync event
\ Exit if not vsync

STMFD R13!, {R0-R12,R14} \ Preserve registers on stack

MOV R9,PC
ORR R8,R9,#3
TEQP R8,#0
MOVNV RO,RO
STMFD R13!, {R14}

LDR RO,xpos
LDR Rl,xinc
ADD R2,RO,Rl
CMP R2, #1216
RSBHI Rl,Rl,#0
STR R2,xpos
STR Rl,xinc

LDR RO,ypos
LDR Rl,yinc
ADD R3,RO,Rl
CMP R3,#960

\ Store PC flags in R9
\ Copy flags to RB selecting SVC mode
\ Write modified flags back into PC
\ NOP instruction to sync reg banks
\ Preserve R14 SVC on stack

\ Modify x position of pointer

\ Modify y position of pointer

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890

RSBHI Rl,Rl,#0
STR R3,ypos
STR Rl,yinc
ADD R3,R3,#64

ORR R2,R2,R3,LSL#l6

MOV R0,#3
STRB RO,OSWORD block
STR R2,0SWORD_block+l

ADR Rl,OSWORD block
MOV R0,#21 -
SWI "OS Word"

LDMFD Rl3!,{Rl4)
TEQP R9,#0
MOVNV RO,RO

Interrupts and Events

\ Save pointer x,y in parameter block

\ Invoke OSWORD to move pointer

\ Restore Rl4 SVC from stack
\ Restore mode and flags from R9
\ NOP instruction to sync reg banks

LDMFD Rl3!,{R0-Rl2,Rl4) \Restore entry registers from stack
MOVS PC,Rl4 \ Return to system

.xpos
EQUD 10
.ypos
EQUD 10
.xinc
EQUD 8
.yinc
EQUD 8

EQUW 0

\

\

\

\

\

x position of pointer

y position of pointer

amount of movement in

amount of movement in

Skip 3 bytes

x direction

y direction

EQUB 0
.OSWORD block
EQUD 0

\ 1 non word aligned byte followed by

EQUD 0

l
NEXT

*POINTER

\ a single word-aligned word.

SYS "OS Claim" ,16,Vsync event,l
: * Enable Vsync event

* Link to event vector

*FX14 4

VDU19,0,24,180,150,255
PRINT '''"Back in command mode"'
PRINT '"Pointer is moving under interrupt control"

Listing 21.2. The bouncing mouse pointer.

269

Archimedes Operating System

Notice how the code presented earlier to preserve R14_svc is actually used
in the program. Try using *FX13,4 and *FX14,4 to disable and enable the
event which drives the routine. You should see the pointer stop and start
appropriately.

270

22 · Conversion SWis

One aspect of the OS, which is likely to be appreciated by every program­
mer, is its range of useful conversion SWIS for dealing with the various
formats for strings, numbers, dates and so forth. This chapter summarises
these SWis concisely - you will probably find yourself using them a great
deal!

String Conversion and Decoding
These SWis perform conversions on strings for the os to use. In particular,
they expand ESCAPE characters entered using the split-bar 'I' syntax for
control characters and the angle-bracket '<>' syntax for OS variables and
embedded integers. You will notice that each SWI builds upon the features
of the preceding ones.

OS_GSinit (SWI &25)
This call must be made once before using either of the following two string
conversion SWis. On entry, RO should point to the string to be converted
and R2 should have its top three bits set as follows:

Bit Effect if Set
31 Inverted commas around strings are not stripped out
30 Split-bar control codes are not translated
29 The first space is treated as the terminator

RO and R2 are returned with values appropriate for calling the other SWis.

OS_GSRead (SWI &26)
This call gets the next character from a string initialised by OS_GSinit. It is
used by the next SWI, OS_GSTrans. On entry it takes the values of RO and R2
set up by os_GSinit and returns the desired character in Rl, updating RO
and R2 as necessar7. os_GSRead performs the actual translation of the
various elements o syntax mentioned earlier - decoding, for example,
control characters denoted by split-bar sequences.

.,

271

Archimedes Operating System

OS_GSTrans (SWI &27)
This SWI is the general-purpose string translation routine - it calls GS_Init
once and then GS_Read for each character in the string. On entry, it
requires RO to point to the string to be translated, which should be
terminated by any of zero, line feed (10) or carriage return (13). RI should
point to a destination buffer with R2 containing its maximum size (and the
top three bits set as for os_GSinit). The resultant string is placed in the
buffer, with RO pointing to the terminator and R2 containing its length.
The Overflow flag 'V' is set if the string could not be translated and the
Carry flag 'C' is set if the buffer overflowed.

Listing 22.1: A string is set up at string% containing ordinary characters, a
character defined as a binary number and the control code for a 'bell'. This
is printed out character-by-character using OS_GSRead, and then all in one
go using OS_GSTrans to decode the string and os_ WriteN to print it.

10 REM >List22/1
20 REM GSDemo
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Reserve some space for string and make
70 REM $string% the string to be translated.
80
90 DIM string% 100,work% 100

100 $string%="Character 254 looks like ""<2 11111110>"" and a
bell sounds like this. <7>"

110 PRINT $string%
120
130 REM Prepare to read translated bytes and keep
140 REM reading characters until carry is set.
150
160 SYS "OS GSinit", string% TO where%,, flags%
170 REPEAT -
180 SYS "OS GSRead",where%,,flags% TO

where%,nextchar%,flags%;checklast%
190 IF (checklast% AND 2)=0 VDU nextchar%
200 UNTIL checklast% AND 2
210 PRINT
220
230 REM Translate and print the string in one go.
240
250 SYS "OS GSTrans",string%,work%,100 TO ,,L%
260 SYS "OS-WriteN",work%,L%
270 PRINT -
280 END

Listing 22.1. Using GS calls.

272

ASCII to Binary Conversions

OS_ReadUnsigned (SWI &21)

Conversion SWis

This call converts an unsigned string in a given number base to a 32-bit
binary number. On entry, RO should contain the number base (in the range
two to thirty-six), RI should point to the string and R2 should contain the
maximum permissible value.

The string may contain valid digits and characters, which may be preceded
with '&' for hexadecimal or with 'base_' for a given base. The string is
analysed up to the first invalid character for the given base. So, for
example, the string '89A' will return 89 if decimal is specified.

The top three bits of RO contain flags which allow various range checks:

Bit Effect if set
3I Terminator must be less than ASCII 33
30 Value must be in range 0 to 255
29 Value must be in range 0 to R2

The call returns with RI pointing to the end of the string (if it was valid), or
is unaltered (if the string was invalid). R2 contains the converted value, or
zero if an error arose. The Overflow flag 'V' will be set if the string was not
in the specified format.

OS_EvaluateExpression (SWI &2D)
This very sophisticated swr translates a string expression which may
include a whole range of arithmetic, logical and string operations. On
entry, RO points to the source string, RI points to a buffer for the translated
result and R2 contains the maximum size of that buffer. On return, the type
of the result is indicated by RI, which is zero for an integer result and non­
zero for a string (whose actual length is returned in R2, with RO intact). If
the size of the buffer is exceeded the error 'Buffer overflow' is generated.

os_EvaluateExpression applies os_GSTrans to the string in order to
evaluate any parameters in angle-brackets, and treats any sequences of
letters which are not operators as variable names. Valid numeric and
logical operators are:

+ * I MOD
= <> >= <= < >
>> >>> <<
AND OR EOR NOT

AOS-R 273

Archimedes Operating System

Strings enclosed in inverted commas may be used, and the following string
operators are valid:

Operator
+
RIGHTn
LEFTn
LEN
STR n
VAL "x"

Effect/value
Concatenation of two strings
As BASIC RIGHT$
As BASIC LEFI$
Length of string
Translate number to string
Translate string to number

Binary to ASCII Conversions

OS_BinaryToDecimal (SWI &28)
This SWI converts a signed 32-bit integer to an ASCII decimal string which is
placed in a buffer. On entry, RO contains the integer, RI points to the buffer
and R2 contains its maximum size. On return, RI is preserved (so it points
to the converted string) and R2 contains the length of the string. The
'Buffer overflow' error is generated if the resultant string will not fit into
the buffer supplied. Listing 22.2 at the end of this section demonstrates the
use of os_BinaryToDecimal. os_ WriteO is used to display the string
returned.

10 REM >List22/2
20 REM BintoDec
30 REM by Nicholas van Sorneren
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Copyright AvS and NvS 1988
60 REM Set up a string buffer.
70
80 DIM buffer 100
90

100 REM Convert -123456 into a signed string and display it.
110
120 SYS "OS BinaryToDecirnal",-123456,buffer,100 TO ,,length
130 buffer?length=O
140 SYS "OS WriteO",buffer
150 PRINT -
160 END

Listing 22.2. Binary to Decimal Conversion.

274

OS_Convert Group
(SWis &DO-&EA)

Conversion SWls

This range of SWis is responsible for conversions between integers and
ASCII strings of various types. Each SWI takes a value in RO, a pointer to a
buffer in Rl and the maximum buffer size in R2.

There are several forms of each SWI, to deal with input and output values
of different sizes - in each case the appropriate digit is appended to the SWI
name given below.

On return, RO now points to the buffer, Rl to the terminating character of
the string within the buffer and R2 contains the number of bytes left in the
buffer. The 'Buffer overflow' error is generated if the resultant string will
not fit into the buffer supplied.

OS_ConvertHexl/2/4/6/8
(SWis &DO-&D4)
These SWis produce a hexadecimal result of the specified number of digits,
with leading zeros added as necessary. Note that an ampersand'&' is not
added to the start of the string.

OS_ConvertCardinall/2/3/4
(SWis &DS-&D8)
These SWis produce an unsigned decimal result using the specified number
of bytes of the input value - no leading zeros are added to the start of the
string.

OS_ Convertlntegerl/2/3/4
(SWis &D9-&DC)
These sw1s produce a signed decimal result (ie, with a leading minus sign
'-'if relevant) using the specified number of bytes of the input value - no
leading zeros are added.

OS_ConvertBinaryl/2/3/4
(SWis &DD-&EO)
These SWis produce an ASCII binary string result using the specified number
of bytes of the input value with leading zeros added.

275

Archimedes Operating System

OS_ConvertSpacedCardinall/2/3/4
(SWis &E1-&E4)
These SWis are the same as the ConvertCardinal group except that they
insert a space between every three digits of the result, eg, 811679 becomes
811679.

OS_ConvertSpacedlntegerl/2/3/4
(SWis &E5-&E8)
These SWis are the same as the Convertlnteger group except that they also
insert a space between every three digits.

SWI Name and Number Conversions
Two SWis are provided which convert a SWI name to its number and vice
versa. The standard SWI naming structure is used, viz:

{X}ChunkName_Name

The exact case of each letter of a SWI name is as important as ever.

OS_SWINumberToString
(SWI &38)
On entry, RO contains the SWI number to be converted, Rl points to a buffer
and R2 contains the maximum size of the buffer. The call looks up the
textual form of the SWI and, if possible, returns it as a null-terminated
string in the buffer pointed to by Rl.

OS_SWINumberFromString
(SWI &39)
On entry, RO points to a string terminated by an ASCII value of less than 33.
The call looks up the SWI number for the given string and returns it in RO.
The 'X' error bit 17 and the SWI chunk number will have been added to the
SWI number automatically, so this call deals with all relevant cases.

276

10 REM >List22/3
20 REM NumberConv
30 REM by Nicholas van Someren
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Copyright AvS and NvS 1988
60 DIM R% 100
70

-.

Conversion SWis

80 REM For each of the converstion SWis, find the name of
90 REM the conversion and use it to convert &8904EA12.

100
110 FOR I%=&DO TO &EB
120 SYS "OS SWINumberToString",I%,R%,100
130 SYS "OS-WriteO " , R%
140 SYS &120
150 SYS I%,&8904EA12,R%,100
160 SYS "OS Write0",R%
170 SYS "OS-NewLine"
180 NEXT
190 END

Listing 22.3. Demonstrating number conversion.

277

23 · Miscellaneous SWis

This chapter discusses the use of a number of SWis which do not fall neatly
into any of the groups described in previous chapters, but which never­
theless, serve a useful purpose. They are listed here in groups according to
function and are presented in alphabetical order within the groups. Each
SWI description is accompanied by an example program to illustrate its
function more clearly.

Timer Functions
Several SWis exist that allow routines to be called at regular intervals or
after a specified delay. These routines expect to be given a time specifi­
cation (as appropriate), a pointer to a routine to execute and a value to
place in R12 when executing the routine (to simulate the workspace
pointer for modules). These SWis are:

SWI "os_callAfter"
sw1 "os_callEvery"
SWI "os_RemoveTickerEvent"

SWI "OS CallAfter" (SWI &3B)
Execute Routine after Time Delay

SWI &3B
SWI &3C
SWI &3D

This call takes a delay in centiseconds in RO, the address of a routine to be
executed in Rl and the value to be passed in R12 to the routine in R2. A
timer is set up by the OS and the code will be executed after the specified
delay. This call returns (almost) immediately with no return parameters.

SWI "OS_CallEvery" (SWI &3C)
Repeatedly Execute Routine
This call is similar to the above, but it calls the routine repeatedly at the
interval specified in centiseconds in RO, the other two parameters being the
same as those for os_callAfter. Once initiated, this call to the routine will
occur at the specified interval until it is terminated in software (see below)

278

Miscellaneous SWis

or the machine is reset. The routine should be as short as possible and, in
general, behave as if it were an interrupt service routine.

SWI "OS_RemoveTickerEvent" (SWI &3D)
Shut Down Timed Execution
This call takes the address of a routine in RO, and in Rl the value which is
passed to the routine's R12 (the two consistent parameters from the above
calls). It uses this information to identify and remove a timed event from
the internal lists of the os.

In listing 23.1 you can see each of these swrs being used. The example
creates a series of counters which are incremented at different speeds
according to the interval time selected for each.

SWI "OS_ReadMonotonicTime" (SWI &42)
Read Time Since Power-on
This call returns the number of centiseconds which have elapsed since the
computer was switched on. It takes no entry parameters and returns the
time in RO. Listing 23.2 demonstrates this.

10 REM >List 23/1
20 REM CallAftEv
30 REM by Nicholas van Someren
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Copyright AvS and NvS 1988
60 DIM code% 1000,counters% 16
70 P%=code%
80 [
90 .countcode ;A simple routine

100 STMFD R13!,{R0} ;Preserve RO on stack
110 LDR RO, [R12] ;Load what is pointed to by R12
120 ADD RO,R0,#1 ;Increment it
130 STR RO, [R12] ;Store it back
140 LDMFD R13!, {RO} ;Restore RO
150 MOV PC, Rl 4 ; Return
160 l
170
180 REM Zero all the counters
190
200 !counters%=0
210 counters%!4=0
220 counters%!8=0
230 counters%!12=0
240
250 REM Use OS CallEvery to call the counter code
260 REM at three different rates.

279

Archimedes Operating System

270
280 SYS "OS Cal1Every",5,countcode,counters%
290 SYS "OS-Cal1Every",10,countcode,counters%+4
300 SYS "OS=Cal1Every",17,countcode,counters%+8
310
320 REM Keep showing the counters until Space is pressed.
330
340 PRINT' '"Press Space Bar to stop ... "' '
350 WHILE INKEY(-99)=0
360 VDU 13
370 PRINT !counters%,counters%!4,counters%!8;
380 ENDWHILE
390
400 REM Turn the counters off again.
410
420 SYS "OS RemoveTickerEvent",countcode,counters%
430 SYS "OS-RemoveTickerEvent",countcode,counters%+4
440 SYS "OS=RemoveTickerEvent",countcode,counters%+8
450
460 REM Now call the count code after 4 seconds.
470
480 PRINT' '"Setting up a 'CallAfter' for 4 seconds"''
490 SYS "OS_Cal1After",400,countcode,counters%+12
500
510 REM Wait until counter is incremented and show
520 REM the elapsed time while we are waiting.
530
540 TIME=O
550 WHILE counters%!12=0
560 VDU 13
570 PRINT;TIME/100;SPC5;
580 ENDWHILE
590 T%=TIME
600 PRINT' '"Counter incremented."
610 END

10
20
30
40
50

Listing 23.1. Using time function swrs.

REM >List23.2
REM ReadMonoTm
REM Archimedes OS: A Dabhand Guide
REM (c) Copyright AvS and NvS 1988

60 SYS "OS ReadMonotonicTime" TO A%
70 PRINT"This machine has been on for ";A%DIV360000;" hours

"; (A%DIV6000)MOD 60;" minutes and"; (A%DIV100)MOD 60;" second(s) ."
80 END

Listing 23.2. Reading time elapsed since power-on.

280

Miscellaneous SWis

VDU Related SWis
While we have consciously chosen not to repeat the documentation of the
VDU drivers in this book, a number of SWis have been provided which
perform useful extraneous functions. They are rather a mixed bag, so
further explanation is left to the descriptions of the individual calls.

SWI 110S_CheckModeValid" (SWI &3F)
Check Whether a Given Mode is Available
This call tests to see if a given screen mode, supplied in RO, can be
accommodated by the memory available. If it can, the Carry flag 'C' is
cleared and RO is preserved; otherwise the Carry flag is set and RO
contains either -1 if no such mode exists or -2 if there is insufficient
memory to support it. Also, Rl is returned containing the mode number
which the VDU would use instead (its best approximation).

Listing 23.3 issues this SWI for each of the modes from 0 to 23 and displays
the results returned.

10 REM >List23/3
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Go through all the modes, checking whether
70 REM they can be selected.
80
90 FOR mode%=0 TO 23

100 SYS "OS CheckModeValid",mode% TO status%,usemode%
110 PRINT"Mode ";mode%;
120 CASE status% OF
130 WHEN -l:PRINT" is not available; would use mode ";usemode%
140 WHEN -2:PRINT" is too big; would use mode ";usemode%
150 OTHERWISE:PRINT" is OK"
160 ENDCASE
170 NEXT
180 END

Listing 23.3. Checking screen mode.

281

Archimedes Operating System

SWI "OS_RemoveCursors" (SWI &36)
Remove the Cursor(s) from the Display
SWI "OS_RestoreCursors" (SWI &37)
Restore the Cursor(s) to the Display
These SWis tum the display cursor on and off. They neither take nor return
any parameters. This is an alternative form of the VDU 23,0,0/1 process.
Listing 23.4 demonstrates this in action.

10 REM >List23/4
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
so
60 MODE 0
61 REPEAT
70 SYS "OS RemoveCursors"
80 PRINT"Cursor off - press a key"
90 key=GET

100 SYS "OS RestoreCursors"
110 PRINT"Cursor on - press a key"
111 key=GET
120 UNTIL FALSE

Listing 23.4. Cursor related SWis.

SWI "OS_Mouse" (SWI &lC)
Return Mouse Information
This call returns the oldest entry in the os mouse buffers. It takes no
parameters, but returns the mouse X and Y co-ordinates in RO and Rl, the
state of the mouse buttons in R2 and the absolute time at which the reading
was taken in R3. The buttons are flagged in the bottom three bits of R2,
with bit 0 being the right-hand button, bit 1 the middle button and bit 2 the
left-hand button. The absolute time is taken directly from the SWI
os_ReadMonotonicTime which is documented above.

Listing 23.5 demonstrates this call by accepting a series of movements and
button depressions and plotting lines interconnecting the locations where
the buttons were pressed.

282

10 REM >List23/S
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
so
60 MODE 0

Miscellaneous SWis

70
80 REM Turn the pointer on, get a few entries into
90 REM the mouse buffer and wait for Return.

100
llO *POINTER
120 PRINT"Move the pointer to different places on the screen"
130 PRINT"and press a mouse button on each. Press Return"
140 PRINT"when you have finished."
150 REPEAT UNTIL GET=l3
160
170 REM Display up to 20 positions.
180
190 CLS
200 FOR n=O TO 20
210 SYS "OS Mouse" TO x,y,z,t
220 DRAW x,y
230 PRINTTAB(0,0);z;",";t;SPC10
240 wait=INKEY(l00)
250 NEXT
260 *POINTER 0
270 END

Listing 23.5. Reading the mouse buffer.

SWI uos_ReadMode V" (SWI &35)
Read Mode Variables
This call allows a number of internal VDU variables to be read for a given
mode (which is not actually selected). On entry, RO should contain the
chosen mode and Rl the number of the variable (from the list below). When
the call returns, R2 will contain the value of the specified variable or the
Carry flag 'C' will be set if either of the parameters were invalid.

The VDU variables which may be extracted are listed below in table 23.1.

Number
0

1
2
3

Meaning
Mode indicators
Bit 0 clear = graphics mode

set = text only mode
Bit 1 set = teletext mode

clear = non-teletext mode
Bit 2 set = interline gap in this mode

clear = no gap in this mode
Number of text columns in this mode minus one
Number of text rows in this mode minus one
Maximum logical colour (1, 3, 15 or 63)

283

Archimedes Operating System

Number
4

5

6
7
8

9
10

Meaning
Horizontal pixel resolution

0::;::1280
1::;::640
2::;::320
3::;::160

Vertical pixel resolution
1=512
2=256

Number of bytes per row of pixels
Number of bytes used by this mode
Shift factor for row start address
To find the offset to the start of
row Y from the start of screen
memory add (Y<<Shift factor)*5
Log to base two of number of bits per pixel
Log to base two of number of bytes per pixel

Table 23.1. The VDU variables.

Example 23.6 demonstrates the use of this SWI by extracting the number of
columns, rows, colours and the size of each mode from 0 to 21 and displays
the results as a table.

10 REM >List23/6
20 REM Read.ModeV
30 REM by Nicholas van Someren
40 REM Archimedes OS: A Dabhand Guide
50 REM (c) Copyright AvS and NvS 1988
60 MODE 0
70
80 REM Display information about screen modes.
90

100 PRINT"Mode","Cols.","Rows","Colours","Size"'
110 FOR mode%=0 TO 21
120 SYS "OS ReadModeVariable",mode%,1 TO ,,cols
130 SYS "OS-Read.ModeVariable",mode%,2 TO ,,rows
140 SYS "OS-ReadModeVariable",mode%,3 TO , ,colours
150 SYS "OS-ReadModeVariable",mode%,7 TO ,,size
160 PRINT ;mode%,;cols+l,;rows+l,;colours+l,;size/1024;"K"
170 NEXT
180 END

Listing 23.6. Read VDU variables for given mode.

284

Miscellaneous SWis

SWI "OS_ReadPalette" (SWI &2F)
Read Palette Values
This call reads the palette settings for a particular logical colour (supplied
in RO) for a specific part of the display (supplied in Rl). The value in Rl
should be 16 for a normal colour, 24 for a border colour or 25 for a cursor
colour.

The results, in the form of the first flashing colour and the second flashing
colour, are returned in R2 and R3. If the colour is steady then these
numbers will be the same. Each is a four byte value, with the bottom byte
containing control information and the remaining three indicating the
amount of red, green and blue respectively. The control byte contains one
of the following values:

Value Meaning
0-15 BBC compatible colour
16 Steady colour specified as RGB
17-18 Mark or Space flashing colour specified as RGB

Listing 23.7 demonstrates the use of this SWI by presenting the palette
definitions for each logical colour in a specified display mode.

10 REM >List23/7
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Set the print field to 8 and input screen mode.
70
80 @%=8
90 INPUT"Which screen mode?"mode%

100 MODE mode%
110 PRINT"Colour","Red","Green","Blue","Sup'cy"
120 FOR col%=0 TO 15
130 SYS "OS_ReadPalette",col%,16 TO ,,mark%,space%
140
150 REM If mark%=space% then colour is steady,
160 REM otherwise, colour is flashing.
170
180 IF mark%=space% THEN
190 red$=STR$((mark%>>8)AND&FF)
200 green$=STR$((mark%>>16)AND&FF)
210 blue$=STR$((mark%>>24)AND&FF)
220 IF mark% AND &80 sup$="Y" ELSE sup$="N"
230 ELSE
240 red$=STR$ ((mark%>>8) AND&FF) +", "+STR$ ((space%»8) AND&FF)
250 green$=STR$ ((mark%>>16) AND&FF) +", "+STR$ ((space%>>16) AND&FF)
260 blue$=STR$ ((mark%»24) AND&FF) +", "+STR$ ((space%»24) AND&FF)

285

Archimedes Operating System

270 IF mark% AND &80 sup$="Y" ELSE sup$="N"
280 IF space% AND &80 sup$+=",Y" ELSE sup$+=",N"
290 ENDIF
300 PRINT STR$col%,red$,green$,blue$,sup$
310 NEXT
320 END

Listing 23.7. Using os_ReadPalette.

SWI "'OS_ReadPoint" (SWI &32)
Read Colour of Pixel
This call allows the colour and tint of a pixel to be read. The co-ordinates
of the pixel must be supplied as (RO,Rl) with the results returned in R2-R4
as follows:

Register
R2
R3
R4

Information
Colour of pixel
Tint of pixel
Validity flag (O=valid,-l=off the display)

Listing 23.8 demonstrates this SWI by printing some colour bars and
allowing the pointer to be moved about the display, printing the colour and
tint found at each pixel.

10 REM >List23/8
20 REM by Nicholas van Someren
30 REM Archimedes OS: A Dabhand Guide
40 REM (c) Copyright AvS and NvS 1988
50
60 REM Set up screen and trap errors tidily.
70
80 MODE 8
90 OFF

100 ON ERROR ON:OSCLI"POINTER O":END
110 FOR col%=129 TO 132
120 COLOUR col%
130 PRINT STRING$(80," ")
140 NEXT
150 REM Turn the pointer on, and display the colour of
160 REM the pixel on which the pointer is located.
170
180 *POINTER
190 REPEAT
200 MOUSE x,y,z
210 SYS "OS ReadPoint",x,y TO ,,colour,tint,flag
220 PRINTTAB(30,14)colour,tint;
230 UNTIL FALSE

Listing 23.8. Reading a pixel.

286

24 · The ARM Chip Set

In order to produce an overall cost-effective computer system Acorn
needed more than just a cheap processor, they needed the supporting
circuitry to go with it. Shortly after the design of the ARM was finished
Acorn's VLSI design team designed three chips to complete a workable
computer. These chips became known as MEMC, VIDC and roe and are a
memory controller, a video controller and an r/o controller respectively.

MEMC is responsible for refresh and address multiplexing for the low-cost
high-density dynamic RAM which Acorn chose to design in. It also deals
with memory protection in different processor operating modes. Finally, it

· stores the addresses of the memory used for the video display, cursor
generation and the sound output, providing Direct Memory Access (DMA)
control for those features.

VIDC is responsible for turning three streams of data, fed it by MEMC, into a
video picture and stereo sound, containing the colour palette and
providing all the timing of video synchronisation signals.

IOC is a versatile input/output controller, comprising a number of counter/
·, timers, several bi-directional input/ output lines and both edge and level­

sensitive interrupt lines.

The rest of this section is devoted to an examination of some of the internal
details of these chips. Because one of the purposes of an Operating System
is to render it unnecessary to program such devices directly, we have
chosen not to examine their register structure in too much detail. If you
really must change their contents yourself, rendering your programs
dangerous to most users, you can get hold of the relevant data books

. directly from VLSI Technology, the foundry which mass produces them.

Inside MEMC
MEMC is a device which may only be addressed; data to be written to MEMC

' is encoded onto the address lines to reduce the pin count. This is done by
mapping MEMC into a very large section of the memory map and using the
lower order address bits to carry the data information, while the higher

287

Archimedes Operating System

order bits of the address carry the information of what to do with the data.
The MEMC registers can only be written to from ARM Supervisor Mode.

MEMC controls the memory map of the Archimedes, ensuring that certain
parts of the memory map, including the part it occupies itself, can only be
accessed in the appropriate processor mode. Furthermore, it divides the
processor address space into a "Logical", or imaginary area, and a
"Physical" area, some of which may actually be real memory (RAM chips).
By translating logical addresses into physical ones, through a series· of
tables, MEMC is able to keep the address space consistent through changes
of the amount of memory and programmed display .sizes in use.

This memory mapping system provides the basis for a genuine "virtual"
memory system, but current versions of the Operating System are not able
to take advantage of this fully. Other Operating Systems, notably UNIX,
are well designed to suit this sort of addressing scheme, although the
MEMC implementation has some non-trivial problems.

The memory map for MEMC is illustrated in figure 24.1.

READ WRITE

&3FFFFFF

Logical to
ROM(High) Physical address

translators

OMA address &3800000

generators MEMC
Control Register

ROM(Low)

Video Controller &3600000

&3400000

Input/Output Controllers

&3000000

Physically Mapped RAM

&2000000

Logically Mapped RAM

Figure 24.1. The MEMC memory map.

288

The ARM Chip Set

The memory in both the logically and physically mapped areas is divided
into a number of "pages". MEMC provides for up to 128 pages of memory
and these pages can be 4, 8, 16 or 32k in size, all being the same chosen size.
The memory in the physically mapped area corresponds directly to the
dynamic RAM chips, for which MEMC provides the addressing and refresh
timing.

Virtual Memory Support
Each page in the logical memory area can be programmed, either to
correspond to one of the 128 pages of physical RAM or is considered to be
"paged out", in which case it has no corresponding physical page. In the
latter case, if the processor tries to access any word in the inaccessible
page, an "Address Exception" is caused. This allows software to be added
to provide a virtual memory system, ie, the user program (and the higher
levels of the Operating System) believe that there is a full complement of
32Mbs of RAM in the system and can happily access any address in the
logical area. If the logical address has no corresponding physical address,
then the address exception would be trapped by software and the lower
level Operating System would find the appropriate page of memory,
usually somewhere on a hard disc. Thus, just a few megabytes of RAM and
a 32Mb hard disk can appear to be 32Mbs of RAM, albeit rather slower than
the real thing.

The MEMC Control Register
Most features of MEMC are controlled by the MEMC control register. This
register is programmed by making up an address according to the data to
be programmed, and then writing (anything, the data is ignored) to that
address. The address layout is shown in figure 24.1 below:
Address Bits (25-0)

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 x 1 1 1 x x x t 0 s v d d h h 1 1 p p x x

Figure 24.2. The MEMC Control Register

Key to MEMC Control Register

x Don't care
t Test mode, this bit must be zero
o Operating System mode, used to protect RAM from

user programs:

AOS-S 289

Archimedes Operating System

0 Program User Mode
1 Operating System User Mode

s Sound DMA bit
0 Disabled
1 Enabled

v Video OMA bit
0 Disabled
1 Enabled

d Dynamic RAM refresh bits
00 No Refresh
01 Refresh only during video flyback
10 No Refresh
11 Continuous refresh

h High ROM access time
00450ns
01325 ns
10 200 ns
11 200 ns with 60ns nibble-mode

Low ROM access time
00450ns
01325 ns
10 200ns
11 200 ns with 60ns nibble-mode

p Page Size
004k
018k
1016k
1132k

The Logical to Physical Address Translator
As we saw above, memory accesses to addresses below 32Mbs (&2000000)
are translated through the logical to physical address translator. This part
of MEMC is very closely coupled to the Operating System and should never
be programmed by user programs. If you are curious about its workings,
the details of its operation can be obtained from the data sheet on MEMC
which is available from VLSI Technology.

DMA Address Generators
Part of MEMC's function is to provide Direct Memory Access (OMA)
addresses for vnx:. VIDC is not connected to the address bus and so can not

290

The ARM Chip Set

output addresses for data it requires. Instead, these addresses are
generated by MEMC which then freezes the processor while it directs RAM to
put the data onto the bus, allowing VIDC to read it. The DMA address
registers are programmed with the physical addresses of the information
and so should only be modified by the Operating System. The important
VIDC registers are:

Video
Cursor
Sound

Vinit, Vstart, Vend and an invisible Vptr
Cinit
Sstart, SendN and Sptr

and their formats are as follows:
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 x n n n Physical Address Physical Address .x x

Bits 16-2 refer to bits 18-4 of the physical address to be used; this address
must lie on a 16 byte boundary, in order that MEMC can retrieve the data
efficiently from RAM which is using a fast "nibble mode".

The start of screen address (the logical address of the memory location of
the top left-hand comer of the screen) can be programmed "legally" by
using os_Word &22.

InsideVIDC
vmc is the exact opposite of MEMC in that it has no connections to the
address bus at all, only connections to the data bus. Register selection is
achieved using the higher order bits of the 32-bit data word, while the
actual data is in the lower order bits. vrnc triggers the transfer of
information at addresses generated by MEMC using several control lines
which interconnect the chips. When any of the buffers in vmc become
nearly empty, a MEMC controlled data transfer is requested and the buffers
reloaded.

The major programmable aspect of vmc, as far as user programs are
concerned, is the colour palette, which translates logical colours stored in
memory into physical colours which are actually displayed. There are
three, four-bit Digital to Analogue Convertors (DACs) which drive the
output connector, allowing 4096 different colours to be displayed. In 2, 4
and 16 colour modes these DACs may be used to generate the relevant
number of colours by loading them with values in the format shown below:

291

Archimedes Operating System

Palette registers (as seen in 2, 4 or 16 colour modes):

S b3 b2 bl bO g3 g2 gl gO r3 r2 rl rO

S Supremacy bit, allowing video mixing
with external hardware

b3, b2, bl, bO Blue colour control bits
g3, g2, gl, gO Green colour control bits
r3, r2, rl, rO Red colour control bits

In the 256 colour modes the top four bits of the logical colour are sent
directly to the colour DACs as shown below. The bottom four bits index into
sixteen palette registers which provide the remaining eight bits of data
needed by the DACS, also shown below:

Palette registers (as seen in 256 colour modes):

S d7b2 bl bO d6 d5 gl gO d4 r2 rl rO

S Supremacy bit, allowing video mixing
with external hardware

b2, bl, bO Blue colour control bits
gl, gO Green colour control bits
r2, rl, rO Red colour control bits
d7, d6, d5, d4 Direct data bits from logical colour

By default, the 256 colour palette is arranged so that :

d3=b2
d2=r2
dl=rl,gl & bl
dO=rO,gO & bO

ie, the 8-bit data becomes %BGg brTt, where Rr, Gg, Bb and Tt are two bit
numbers representing levels of R d, Green, Blue and Tint (whiteness).

Sound Frequency and S ereo Position
VIDC will reproduce up to eight c annels of sound through two logarithmic
DACS which provide a stereo effe!t. The data for each channel is supplied in
successive bytes, whose transfer s triggered by the sound buffer becoming
nearly empty. Each channel has stereo position register associated with it
and the stereo effect is created b pulse width modulation of the analogue
level between the left and right c annel DACs.

292

The ARM Chip Set

InsideIOC
IOC is a versatile interface and peripheral control chip which contains a
number of programmable interrupt masks, input/ output lines and four
counter/timers. Theos sets up these timers to perform various internal
functions:

• Timer 3 generates the baud rate for the serial keyboard interface.

• Timer 2 is used to generate baud rates for the RS423 serial controller,
which needs an external generator to achieve disparate transmit
and receive rates.

• Timer 0 is used by the Operating System to generate the 1I 100 second
interrupts which are used to time the system clock, colour flash rate
and keyboard repeat rate (amongst others!).

The remaining timer (timer 1) can be used for any purpose and is free for
user programs. All the timers have the same register layout and are
programmed similarly. Each timer may be loaded with a 16 bit value which
is decremented by one every SOOnS. When the counter value reaches zero
an interrupt will be generated if the control registers have been set appro­
priately and the counter re-loaded.

The following piece of assembler should allow you to set up Timer 1 to
generate interrupts which may be caught via the IrqV vector (see the
chapter on Vectors). On entry, RO should contain the counter initialisation
value in the lower 16 bits .

. UseCounter
;RO contains the value
LOR R2,IOC Base

for the counter in low 16 bits

STRB RO, [R2, #&50]
MOV RO,RO,LSR #8
STRB RO, [R2,#&54]
MOV RO,PC
SW! "OS EnterOS"
MOV Rl,PC
ORR Rl,Rl,#3<<26
TSTP Rl, Rl
LDRB R3, [R2,#&12]
ORR R3,#%01000000
STRB R3, [R2, #&10]
TSTP RO,RO
STR RO, [R2, #&58]

.IOC Base
EQUD &03400010

;Store low byte

;Store high byte
;Get the User Mode PSR

;Get the supervisor mode PSR
;Mask out interrupts
;Set the PSR flags

;or use BIC to clear bit

;Restore the PSR flags
;Start the counter

293

Archimedes Operating System

And here is a listing of a sample interrupt handler which checks to see if it is
indeed the timer which has caused an interrupt:

.InterruptCode
STMFD R13!, {R0,R2)
LDR R2,IOC Base
LDRB RO, [R2,#&16]
ANDS RO,R0,#%01000000
BNE Our!nterrupt
LDMFD R13!, {R0,R2)
MOV PC,R14

.Our Interrupt

your code here

;Don't claim

LDMFD R13!, {R0,R2,PC) A ;Claim interrupt

294

25 · Floating Point Model

Besides the integer arithmetic and data processing instructions we have
seen, the ARM was designed with a general-purpose 'co-processor'
interface which allows its instruction set to be expanded. This mechanism
was provided primarily to allow hardware support for floating point
operations, which are more commonly performed by complex software
packages.

The ARM Co-processor Interface provides a two-level mechanism for
expanding the instruction set. There exists an 'undefined instruction'
vector, through which ARM will jump if it encounters an instruction which
is unrecognised by the ARM itself and is not supported by any additional
hardware present. The Co-processor Interface allows hardware to be
added to deal with new instructions, but where the hardware is absent, the
undefined instruction vector provides the means for a software emulator
to take its place (albeit more slowly). This is precisely the mechanism
employed for floating point operations.

The Operating System contains a module called the 'Floating Point
Emulator' (the FPE) which deals with floating point arithmetic. If a floating
point co-processor is fitted, the FPE is pre-empted and the operations are
actually completed by hardware. Whether hardware is present or not,
however, the software interface (that is, the programmer's view) remains
the same, thus providing an important 'transparency' and ensuring that
the same software can be used in either situation.

Unfortunately, one hurdle remains: the ARM BASIC Assembler does not
support floating point instructions (which were still being defined when the
assembler was written) and thus they must either be hand-assembled or
called through a more sophisticated assembler (yet to be announced).

Floating Point Programmer's Model
The ARM floating point system conforms to the IEEE specification which is in
common use throughout the computer industry. The ARM programmer's
model provides eight floating point registers, known as FO to F7, and a
number of precision formats which allow the programmer to trade off

295

Archimedes Operating System

speed against accuracy. Whilst the format used internally is not defined,
there are four formats for storage of floating point numbers in memory
which are outlined below:

IEEE Single precision (S)
32 bits: 1 sign bit

23-bit mantissa (fraction)
8-bit exponent

IEEE Double precision (D)
64 bits: 1 sign bit

52-bit mantissa (fraction)
11-bit exponent

Double extended precision (E)
96 bits: 1 sign bit

64-bit mantissa (fraction)
15-bit exponent
16 bits not used

Packed decimal BCD (P)
96 bits: 1 sign digit

19-digit mantissa
4-digit exponent

The ARM floating point model also provides for a floating point status
register to indicate the status of calculations. This register includes the
following flags:

Overflow
Underflow
Division by zero
Inexact result
Invalid operation

Flags indicating the result of floating point operations are automatically
copied into the ARM status register by means of the Co-processor
Interface, thus keeping the programmer's job as simple as possible.

The ARM Floating Point Instructions
The ARM co-processor interface defines three distinct types of instruction,
all of which are used in the floating point system. They are:

296

Floating Point Model

CPDT Co-processor data transfer
(for moving values to and from memory)

CPRT Co-processor register transfer
(for moving between ARM and FP registers)

CPDO Co-processor data operation
(for initiating co-processor operations)

The ARM floating point system supports a number of actual instructions for
each of these instruction types. The rest of this section details all of these
instructions.

Co-processor Data Transfer
Syntax:

<mnemonic>{cond}<precision> Fx, address

There are two CPDT instructions for floating point data movement:

Mnemonic Effect
LDF Load floating point register
STF Store floating point register

These instructions move data between main memory and the floating point
registers. They require the following parameters to be specified:

<precision> One of S, D, F or P (as discussed earlier)
Fx One of the floating point registers FO-F7
address Either [Rn] {,#offset} or [Rn,#offset] {!}

The offset is from the ARM base register specified and is in the range -1020
to + 1020. The offset is added to the base register when write-back is
specified with pre-indexed addressing and is always added when post­
indexed addressing is used.

Co-processor Register Transfer
Syntax:

varies - see below

There are six CPRT instructions for floating point register movement. Two
are concerned with conversions between floating point and integer values;
the remaining four deal with the floating point control and status registers.
The CPRT instructions are summarised overleaf:

297

Archimedes Operating System

Mnemonic
FLT

FIX
WPS
RFS
WFC
RFC

Effect
Change integer to
floating point
Floating point to integer
Write FP status
Read FP status
Write FP control
Read FP control

Operation Performed

Fx:=Rd (or Fx:=#value)
Rd:=Fx
FPSR:=Rd
Rd:=FPSR
FPC:=Rd*
Rd:=FPC*

* Supervisor Mode only

The status and control operations simply require an optional condition and
a register name. The conversion instructions are a little more complex -
their full syntax is shown below:

FLT{cond}<precision>{rounding mode} Fx,(Rd #value)
FIX{cond}<precision>{rounding mode} Rd,Fx

The precision field is of the same form as discussed earlier. The rounding
mode controls how the value is rounded for conversion, according to the
table below:

Mode
Nearest
Plus infinity
Minus infinity
Zero

Letter
(default rounding mode)

P (always round up)
M (always round down)
Z (round towards zero)

Co-processor Data Operations
Syntax:

<unaryop>{cond}<precision>{rounding mode} Fd,(Fx #value)
<binaryop>{cond}<precision>{rounding mode} Fd,Fx,(Fy #value)

The co-processor data operations are divided into two groups: unary
operations (which take one parameter) and binary operations (which take
two). In either case, one parameter may be a floating point constant from
the list below:

Floating point constants: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.5, 10.0

The following tables summarise the unary and binary floating point
operations available.

298

Floating Point Model

Unary Floating Point Operations
Mnemonic Effect Calculation performed

MVF Move Fd := Fx
MNF Move negated Fd := -Fx
ABS Absolute value Fd := ABS (Fx)
RND Round to integer Fd := integer value of Fx
SQT Square root Fd := square root of Fx
u:x; Log to base ten Fd := log base ten of Fx
LGN Log to base e Fd := log base e of Fx
EXP Exponent Fd := e"Fx
SIN Sine Fd : = sine of Fx
cos Cosine Fd := cosine of Fx
TAN Tangent Fd := tangent of Fx
ASN Arcsine Fd := arc sine of Fx
ACS Arc cosine Fd := arc cosine of Fx
ATN Arc tangent Fd := arc tangent of Fx

Binary Floating Point Operations
Mnemonic Effect

ADF Add
MUF Multiply
SUB Subtract
RSF Reverse subtract
DVF Divide
RDF Reverse divide
POW Power
RPW Reverse power
RMF Remainder
FML Fast multiply
FDV Fast divide
FRD Fast reverse divide
POL Polar angle

1 Single precision result

Calculation Performed
Fd := Fx+Fy
Fd := Fx*Fy
Fd := Fx-Fy
Fd := Fy-Fx
Fd := Fx/Fy
Fd := Fy/Fx
Fd := Fx"Fy
Fd := Fy"Fx
Fd := Fx MOD Fy
Fd := Fx*Fy1

Fd := Fx/Fy1

Fd := Fy/Fx1

Fd := polar angle of Fx, Fy

Note that the 'fast' operations produce a result whose accuracy is that of a
single-precision calculation, regardless of the specified precision of the
instruction.

Rounding of the trigonometric functions only takes place after the
calculation has been completed, thus preserving as much accuracy as
possible during the calculation. The 'nearest' rounding mode is used.

299

Archimedes Operating System

Co-processor Status Transfer Instructions
Syntax:

<mnemonic>{cond}<precision>{rounding mode} Fx, Fy

The co-processor status transfer instructions allow comparisons to be
made between values in floating point registers and, according to the
result of such comparisons, the setting of the ARM'S own status flags. The
co-processor status transfer instructions are:

Mnemonic Effect
CMF Compare FP
CNF Compare negated FP
CMFE Compare FP (exception)
CNFE Compare negated FP

(exception)

Calculation performed
Compare Fx with Fy
Compare Fx with -Fy
Compare Fx with Fy

Compare Fx with -Fy

The comparisons are available in two forms: normal and exception. Tlte
exception form raises an exception (error) if either of the two parameters
are invalid numbers (that is, invalid by IEEE standards). Such values could
be the result of the failure of previous calculations, for example. The IEEE
standard specifies that CMF should be used for equality comparisons (that
is, where a BEQ or BNE will be used after the instruction) and CMFE should be
used for all others (that is, where a 'greater than' or 'less than' test will
follow).

The ARM PSR flags are set according to the result of these floating point
operations and indicate the following states:

Flag l\1eaning
N Less than - Fx was less than Fy (or -Fy)
Z Equal
C GT or equal - Fx was greater than or equal

to Fy (or -Fy)
V Unordered

Conclusion
The ARM Floating Point Co-processor instruction set provides a wealth of
operations for high-precision arithmetic. When a hardware Floating Point
Co-processor is not present, a software emulator performs the operations
'transparently' from the programmer's point of view. The ARM BASIC v
assembler does not support the floating point instructions which must,
therefore, be hand-coded or assembled with another assembler.

300

Floating Point Model

The complexity of the IEEE floating point arithmetic standard is such that it
is not possible to give full details in a general-purpose book such as this.
The interested reader is referred to Acorn Floating Point Co-processor
documentation and to the IEEE standard definition document.

301

A · Programs Disc

A Programs Disc to accompany this book is available direct from Dabs
Press. It contains all the example programs listed in these pages plus
several extra utility programs. The disc is supplied with its own manual for
ease of use.

The bonus programs include:

Listswrs A program to list all the swr names in a particular swr
number chunk.

Find A utility program which will locate a file or group of files that
are 'lost' somewhere on a disc. The file specification, which
may include wildcards, and directory path may be specified.

DirCopy A utility program which copies whole directories from one
disc to another on a single-drive machine. It has the file type
of an application because it uses all the RAM in a machine to
speed up the copying of directory structures and their files.
The transfer is typically achieved with only two disc swaps on
an Archimedes 310.

DescRMA A development utility which is useful when developing
programs which use the RMA (eg, modules). It simply
provides a printout of the RMA description returned by the
swr called os_Module.

The Floating Point Assembler
FP A allows floating-point instructions to be included in machine-code
programs assembled using the BASIC v assembler. BASIC v does not usually
allow floating-point mnemonics to be assembled, so the FP A adds exten­
sions in the form of a BASIC LIBRARY which permit this.

The new pseudo mnemonics that are added are:

FEQ<S>const Assembles a 4-byte single precision constant.

FEQD const An 8-byte double precision one.

302

FEQE const

FEQP const

A 12-byte high-precision one.

A 12-byte packed BCD one.

Examples of using these are also included on the disc.

Programs Disc

The disc is available in 3.Sin ADFS format and the programs are not copy
protected in any way, so you are free to integrate them into your own
software as it develops. The disc is compatible with all versions of the
Archimedes and both Arthur and RISC OS Operating Systems.

To obtain your copy of the Archimedes Operating System programs disc
send £9.95 to the address given below. Cheques and POs shoula be made
payable to Dabs Press. Access and Visa card orders are acceptable by
phone, simply by quoting your card number, type and expiry cfate - and
aon't forget your addressT

By post:

By phone:

Dabs Press,
76 Gardner Road,
Prestwich,
Manchester,
M25 7HU

061-773 2413

303

B · Dabhand Guides Guide

Books and Software for the Archimedes
Dabs Press already have a list of books, software and games for the
Archimedes and this is being expanded to include a wid.e range of
Archimedes products. Those already in an advanced stage of preparation
are detailed in the following pages. Please note that all details are correct
at the time of writing but are subject to change without notice. Please
phone or write to confirm availability before ordering.

All future publications are in an advanced state of preparation. Content
lists serve as a guide, but we reserve the right to alter and adapt them
without notification. Publication dates and contents are subject to change.
All quoted prices are inclusive of VAT (on software; books are zero-rated),
and postage and packing (abroad add £2 or £10 airmail). All are available
from your local dealer or bookshop or, in case of difficulty, direct from
Dabs Press. If you would like more information about Dabs Press books
and software, then drop us a line at 5 Victoria Lane, Whitefield, Man­
chester, M25 6AL, and we'll send our latest catalogue. See previous page
for ordering details.

Archimedes Books

Archimedes Assembly Language
By Mike Ginns. Price £14.95. Spiral bound 368 pages.
ISBN 1-870336-20-8. Available now. NEW Second Edition
Programs disc £9.95 - £21.95 inclusive when ordered with book.

This popular and informative book is now in its Second Edition and
includes coverage of RISC OS.

This is a complete guide to programming the Archimedes in machine code.
Mike Ginns provides a clear, step-by-step account of using the assembler
using simple, but useful, programs and provide the practice to illustrate the
theory, thus making it ideal for the beginner. But this guide goes much
further. For instance, it explains how to use the Debugger and there is a

304

Dabhand Guides Guide

large section on implementing BASIC equivalents in machine code, plus
coverage of Arthur and RISC os and using SWis, WIMPS and fonts.

The powerful Operating System is covered with details of how to access its
many facilities from the machine code level. Within this are details of using
graphics, sound, windows, the font painter and the mouse, all from within
machine code programs. To make the transition from BASIC to machine
code as painless as possible, the book contains a large section on imple­
menting BASIC statements in machine code.

A programs disc accompanies the book which contains all of the various
programs used in the text, plus 11 extra utility programs including a
disassembler, various memory manipulators and a disc sector editor. The
programs disc is suppli~d with its own 16 page manual.

Reviews:

Rise User, July I August 1988: "The style of the text throughout the book is
easy to read .. . ! would recommend Archimedes Assembly Language."

Archive, August 1988: "The actual explanations are lucid ... Overall then,
this is a comprehensive and wide ranging book which stands up well as
both a tutorial on assembly language and as a guide to the programming
environment and facilities provided by Arthur. I recommend it ... "

C : A Dabhand Guide
By Mark Burgess. Price £14.95. Perfect bound 512 pages.
ISBN 1-870336-16-X. Available now. NEW Second Edition
Programs disc £9.95 - £21.95 inclusive when ordered with book.

PCW Said: " ... I only wish it had been available when I was learning C."

A behind-the-scenes storm has quietly been sweeping over the micro­
computer world during the last few years: it is the C programming
revolution. So much so that all the popular micros now have C compilers
available to them.

Spread over an amazing 512 pages, this thoroughly readable Dabhand
Guide leaves you in no doubt as to the natural language in which to
program your computer. From elementary principles, PCW contributor and
author, Mark Burgess introduces the C philosophy in a highly readable, no
nonsense manner. Step by step, page by page you ascend the C ladder with
simple illustrated and documented programs.

But why should you want to learn C at all? The answers are many, not
least compatibility, portability and speed. C is a general purpose language.

AOS-T 305

Archimedes Operating System

It can be used to write any kind of program from an accounting package to
an arcade game. It has sophisticated facilities built in which are quite unlike
those of any other language. The range of C commands span from a higher
level than BASIC to as low a level as machine code. C holds nothing back
from the programmer - there are virtually no limitations.

C is a standard language - programs the world over are written to this
standard and in such a way as to allow them to be transferred to other
machines and run again, in many cases with little or no editing required. A
source program written in C on the Amstrad PC, for instance, would
generally compile and run quite happily on the Archimedes, the Amiga, or
any other PC for that matter.

Speed - a vital factor in the running of programs - is assured because a C
program is compiled into ultra fast machine code. Write your very own
commands in a friendly environment and let the C compiler transform it
into machine code - no assembly language need be known! And what's
more the original C source program remains intact for re-editing or fine
tuning as you require.

Thirty-seven chapters, six appendices, a glossary and a comprehensive
index make C: A Dab hand Guide probably the guide to programming in C.
Included is a chapter on programming in C on the Archimedes, (and BBC
and the Master 128/Master Compact for that matter).

Unique diagrams and illustrations help the reader to visualise programs
and to think in C. Assuming only a rudimentary knowledge of computing in
a language such as BASIC or PASCAL, the reader is provided with a ground­
ing in how to build up programs in a clear and efficient way.

To help the beginner a complete chapter on fault finding and debugging
assists in tracing and correcting both simple and complex errors.

A Programs Disc is available for most of the major micros, and this
contains the listings in the book plus several other useful utilities including
an adventure game and an indexer. The extra programs are documented
in an informative manual.

The first review of C: A Dabhand Guide appeared in Beebug Magazine in
June 1988 and it had this to say: "The 512 pages cover all important aspects
of C. .. the tone is friendly and the explanations are full and easy to
understand without being patronising ... the program structure diagrams
which illustrate the larger programs are very helpful...the book being full
of good advice about program design and layout. In conclusion, then, a
very good, reasonably priced introduction to C for the non-specialist."

306

Dabhand Guides Guide

BASIC V
By Mike Williams. Price £9.95. Perfect bound 140 pages approx.
ISBN 1-870336-75-5. Available February 1989.

This book provides a practical guide to programming in BASIC v on the
Acorn Archimedes and covers BASIC v on RISC OS. Assuming a familiarity
with the BBC BASIC language in general, it describes the many new
commands offered by BASIC v, already acclaimed as one of the best and
most structured versions of the language on any micro, and is illustrated
with a wealth of easy-to-follow examples throughout.

An essential aid for all Archimedes users, it will also appeal to existing
BASIC users who wish to be conversant with its many new features. BASIC
v includes several new control structures which are major innovations.
These are discussed and the text is littered with simple but effective
examples. For the graphics programmer, the new extended graphics
commands are covered with interesting examples of their use along with
control and manipulation of the colour palette.

Other major topics covered include:

• WHILE, IF and CASE

• Use of mouse and pointer
• Local error handling.
•Sound
• The Assembler

• Matrix operations
• Functions and Procedures
• Operators and string handling
• Arthur and RISC OS

• Programming hints and tips

The author, Mike Williams, is Editor of Beebug magazine and Rise User,
the largest circulation Archimedes specific magazine.

Archimedes Software

Archimedes Basic Compiler
By Paul Fellows. Price £99.95 Inclusive. Available Now NEW Version 2.
Two discs. 148 page Reference Guide, 56 page User Guide.
Demo Disc available for £2. Refundable on full order. Supports over 100
BASIC v commands and supplied with sample programs.

ABC: The fast and powerful way to write instant machine code!

If you want it all - speed, power and performance, then look no further
than the Archimedes Basic Compiler. ABC takes programs written in BASIC
V and transforms them into superfast ARM machine code. Speed increases

307

Archimedes Operating System

of 5000% are possible depending on the nature of the program being
compiled.

A&B Computing said: "ABC is a vital part of the programmer's toolbox, it
puts compilers on other systems to shame. Unquestionably one of the most
impressive pieces of software I have yet seen running on the Archimedes."

Archive Magazine said: "I can tell you now, I am very impressed. This is a
superb package, which I thoroughly recommend ... "

Main Features:
• Converts BASIC v programs to ARM machine code
• Completely stand-alone code-does not access BASIC ROM
• All compiled code is position independent
• Speed increases of over 5000% possible
• Code size ratio approx. 1:1 (against tokenised source)
• Target program size limited only by disc space
• Conditional compilation supported
• Supports floating point arithmetic (using FPE)
• CALL and USR parameter passing greatly enhanced
• New pseudo-variables included
• Runs on any Archimedes
• Friendly window-based control system
• Relocatable module making option
• Application, utility and service module types supported
• Full in-line assembler support
• Compiles using disc or RAM or both
• Execute immediately after compilation
• Large range of compiler directives
• Manifest constants implemented for extra speed
• Comprehensive and interesting examples disc
• Intelligent disassembler produces source of compiled code
•No additional runtime modules required
• No intermediate code system
• 148pp Reference Guide and 56pp User Guide
• ARM fp processor compatible
• RISC OS and Arthur 1.2 compatible
•Technical support to registered users
• Absolutely no royalties to pay on compiled code

Version 2 now supports the following additions and improvements:

• Double/Extended precision floating point
• RETURN parameters
• Multiple-ENDPROCs and function returns

308

Dabhand Guides Guide

• LOCAL Errors
• Scope rules
• Extended Compiler Directives

ABC is written by Paul Fellows, head of the Acorn team which wrote the
original Archimedes Operating System. Complete specification available
on request.

Instigator
By Mike Ginns. Price £49.95. Available March 1989.

The RISC OS Compatible Archimedes System Manager

Instigator is a powerful extension to your Archimedes Operating System -
Arthur 1.2 and RISC os - and the ideal foil for programmers and software
developers alike. Containing over 65 * commands this module provides a
wide range of exciting and invaluable system aids.

Instigator provides an extremely powerful working environment for the
user. It allows tasks be carried out quickly and efficiently. You get on with
the task in hand, Instigator provides the necessary information for you and
works with the Operating System to carry out your wishes, whether you
are using application packages or programming the machine itself.

Its new commands and facilities will prove indispensable to any serious
user of the Archimedes system. The commands make new operations
possible, help to simplify the use of existing features and give the user
unprecedented control over the machine.

Instigator Commands

Here is a list of some of the commands provided by Instigator:

*Medit, *Mmove, *Mfill, *Mfind, *Diss, *Tidy, *Compare, *Blist,
*Dimmer, *Half, *Full, *VIDC, *OpenWindow, *CloseWindow, *Files,
*Confirm, *FSsave, *Fsload, *Compress, *Uncompress, *Printer, *cso,
*SetPath, *Paths, *UsePath, *KillPaths, *SavePaths, *LoadPaths,
*Return, *RGB, *Colours, *SetPalette, *Palette, *ListPalette,
*KillPalette, *SavePalette, *LoadPalette, *Keys, *SaveKeys, *LoadKeys,
*Saveosvars, *Loadosvars, *osvars, *SaveCMOS, *LoadCMOS, *!Status,
*Dedit, *Dget, *Dput, *Dsearch, *FreeMap, *LineEdit, *Archive,
*History, *Cut, *Definemode, *Hourglass, *Percentage, *Xinfo,
*Smooth

Instigator is supplied on disc as a Relocatable Module. An examples disc is
included along with a 100 page User Guide.

309

Archimedes Operating System

And There's More!
Dabs Press will be adding to their increasing range of quality books and
software for a wide range of micros during the next year. For the
Archimedes this includes ABC65 a 6502 cross compiler allowing 6502-based
code and Sideways RAM images to be generated from BASIC v developed
and tested on the Archimedes. The stand-alone 6502 code can then be
transferred to a BBC B, B+, Master 128 or Master Compact computer.
ABC65 will be available in the second quarter of 1989.

Forthcoming for the Amiga is ACE, a BBC BASIC v and Amiga Microsoft
BASIC compiler bearing a strong resemblance to ABC but taking particular
advantage of the Amiga's own graphics and sound facilities. Books to be
released for the Amiga include Amigaoos: A Dabhand Guide (which covers
releases 1.2 and 1.3), Amiga BASIC: A Dabhand Guide and Amiga 500 First
Steps.

The Z88 will be supported with Z88: A Dabhand Guide and Z88 PipeDream:
A Dabhand Guide. The former is an indispensable guide for all Z88 users
while the later is the Z88 wordprocessors companion.

For the PC and Amstrad PCs our range of books will be extending to
include Ability Plus: A Dabhand Guide, Shareware: A Dabhand Guide and
Postscript: A Dabhand Guide. These will complement our titles WordStar
1512/Express: A Dabhand Guide and SuperCalc 3: A Dabhand Guide.

For full details on these and other Dabs Press publications, write or phone
now for our free and extensive catalogue. See page 303 for address details.

310

Index

67 *LOAD 70 85
$ 67 *MODULES 120
%*0 50 *OPT 86
%0 49 *PRINT 86
% 67 72 84 *QSOUND 198 205
& 67 *REMOVE 87
*command 4047 *RENAME 87
*/ 4870 *RM CLEAR 120
*ACCESS 75 *RMKILL 120 121126
*APPEND 76 *RMLOAD 121
"AUDIO 196 199 *RMREINIT 121
*BUILD 76 *RMRUN 121125
*CAT 77 *RM TIDY 122 126
*CDIR 77 *RUN 48 70 88
*CHANNEL VOICE 197 200 *SAVE 88
*CLOSE 77 *SET 49 56 57
*CONFIGURE 5159 *SETEVAL 58
*COPY 78 *SETMACRO 58
*COUNT 79 *SETTYPE 72 76 89
*CREATE 80 *SHADOW 58
*DELETE 80 *SHOW 59
*DIR 81 *SHUT 89
*DUMP 81 *SHUTDOWN 89
*ECHO 52 *SOUND 197 201
*ENUMDIR 82 *SPEAKER 196199
*ERROR 52 *SPOOL 90
*EVAL 53 *SPOOLON 90
*EX 82 *STAMP 7190
*EXEC 83 *STATUS 59
*FX 53 *STEREO 196 200
*GO 53149 *TEMPO 198 205
*GOS 54 *TIME 60
*HELP 54 *TUNING 197 203
*IF 55 *TV 60
*IGNORE 55 *TYPE 91
*INFO 83 *UNPLUG 121122
*KEY 56 *UNSET 60
*LCAT 83 *UP 91
*LEX 84 *VOICES 197 203
*LIB 73 84 *VOLUME 197 204
*LIST 84 *WIPE 92

311

Archimedes Operating System

67
67 bar, double 271

6502 1633 bar, split 271
4867 bar, vertical 271

< 48271 barrel shifter 24
> 48271 base number, SWI chunk 136

BASIC V 20 33 307

ABC 307
BGetV 259

add 26
binary conversion 273 274

address calculation 20
boot options 86

address exception 255
box, rub-out 190
BPutV 259

address validation 156 braces 48
address, hardware 156 branch 2534
ADFS 66 branch with link 25
adjust button 162 branch, return from 26
ADR 38 buffer size, DMA 208
Alias$ 49 bugs, Arthur 1.2 155 156
Alias$LoadType 85 button 161
aliases 49 button, adjust 162
alignment 2134 button, menu 162
allocation, memory 34 button, mouse 170
amplitude 202 button, select 161
AND 26 ByteV 258
anti-aliasing 186188193
application environment 150 Cflag 22
application top-down 151 caching, font 186
application workspace 152 153 calculation, address 20
application writing 149 CALL 38
application, temporary 151 carat 171
Archimedes 304 caret 68
ArgsV 259 Carol 87
arithmetic instruction 26 Carry flag 22
ARM 1617 287 catalogue 77
arrow icon 162 Change Environment V 259
arrow 173 character input/ output 238
Arthur 1.2 bugs 155156 character input 238
ascending stack 32 character line 240
ASCII conversion 273 274 character output 244
assembler 20 24 32 304 check mark 173
assembler, floating point 302 chunk, memory 153
assembly directive 37 chunk, SWI 42
assembly error 36 CISC 15
assembly language 304 claim heap 155
assembly, offset 3536 Cli$Prompt 57
assembly, two-pass 36 clicking 161
attribute 75 CliV 258

close icon 162
CnpV 259

312

co-ordinate conversion 190
co-ordinate, Font Painter 190
co-ordinate, OS 190191
co-ordinate, window 163
co-processor 295
code, condition 22 23
command decoding 133
command line interpreter 40 41 47
commands, OS_CLI 50
comments 48
compare 27
comparison instruction 27
compatability, software 156
condition code 22 23
control, keyboard 241
conversion SWis 271
conversion, ASCII 273 274
conversion, binary 273 274
conversion, co-ordinate 190
conversion, string 271
conversion 275
Convert Binary 275
ConvertCardinal 275
ConvertHex 275
Convertlnteger 275
ConvertSpacedCardinal 275
ConvertSpacedinteger 275
copy options 78
Copy$0ptions 78 79
CPOO 297298
CPDT 297
CPRT 297
create directory 77
CSD 68 72 81
CSL 68 72 83 84
currently selected directory 68
currently selected library 68
cursor 282

DAC 195 291
data abort 255
date stamp 71 90
death, module 126
decoding code, SWI 137
decoding table 133
decoding table, SWI 137
decoding, command 133
decoding, help 133
decoding, string 271

Index

descending stack 32
describe heap 154
DescRMA 302
device filing system 66 69
dimming 173
DirCopy 302
directive, assembly 37
directory 67
directory tree 116
directory, create 77
directory, currently selected 68
directory, examine 82
directory, parent 68
directory, previously selected 68
disc name 68
disc, program 302
display position 60
display screen 286
divide 28
division 28
DMA 18 287 290
DMA buffer size 208
double bar 271
dragging 162 171
DumpFormat 84

empty stack 32
environment 150
environment, application150
EOR 26
equates 37
error handling, file 102
error numbering 44
error, assembly 36
error, module 123
error, SWI 43
ErrorV 258
ESCAPE 45 76 239 244
evaluation, expression 273
event, vertical sync 268
event-driven 163
EventV 259
event 265
examine directory 82
exception, address 255
execute address 70
execution 38 39
expression evaluation 273
extend heap 155

313

Archimedes Operating System

file error handling
file naming
file redirection
file renaming
file type
113

102
67
48
87
70 717285 89

File$Path 73 101
FileSwitch 66 74
FileV 259
filing system, device 66 69
filing system, RAM 66
filing system 66 69 93
fill 228
finalisation, module 126
FindV 259
Find 302
FIQ 255263
flag, Carry 22
flag,C 22
flag, icon 165
flag, Negative 22
flag, N 22
flag, Overflow 22 43
flag, overflow 124
flag, V 22 43 124
flag, Zero 22
flag, Z 22
FLIH 265
floating point 295
floating point assembler 302
floating point emulator 295
floating point instruction 295
font caching 186
Font Manager 186
Font Painter 186
font 186
Font Painter co-ordinate 190
Font painting options 189
Font$Prefix 186 187
FontSize 186
Font_CacheAddr 187
Font_ConverttoOS 190
Font_Converttopoints 191
Font_FindFont 187
Font_LoseFont 187
Font_Paint 189
Font_ReadDfn 191
Font_Readinfo 191

314

Font_SetFontColours 188
Font_SetFont 189
Font_SetPalette 188
Font_StringWidth 192
foreign character 67
format, module 124
forward reference 35
FPA 302
FPE 295
free 232
frequency, sound 292
FSControlV 259
full stack 32
function key 243

gate off 231
gate on 227
GBPBV 259
guidelines, software 156

handle 165
handling code offset, SWI136
hardware address 156
hardware vector 255
header, module 124
heap manager 154
heap, claim 155
heap, describe 154
heap, extend 155
heap, initialise 154
heap, memory 153
heap, release 155
help decoding 133
help string, module 132

icon flag 165
icon, arrow 162
icon, close 162
icon, shuffle 162
icon, stretch 162
icon, toggle 162
IEEE 295
immediate value 24
in-line string 249
independence, position 37
indexing 30
indirect string 250
initialisation, module 125
initialise heap 154
input stream 238

input, character 238
input/output, character 238
input/output, simple 238
install 232
instantiate 232
instruction, arithmetic 26
instruction, comparison 27
instruction, floating point295
instruction, logical 26
instruction, multiple register 31
instruction, unknown 255
InsV 259
intercepting vector 259
interlace 60
interrupt 20 21 22 40 263
interrupt, software 32 255
IOC 18 287 293
IRQ 255263
IrqV 258

justification, text

kbd:
Key$
keyboard control
keyboard status byte
keypress

label
library
limit, time
line, character
link register
link, branch with
list, register
ListSWis
load address
load register
Load$Type
logical instruction
logical memory
Logical Work Area
LWA

machine code
machine RESET
macro
manager, heap
map, memory
Marvin

189

69
56 57
241
242
171

25 34 35
68 72
240
240
2025
25
31
302
70
29
71
26
153 288
162
162163165

304
255
5862
154
288
63

MEMC 18287
memory address translation 290
memory allocation 34
memory chunk 153
memory heap 153
memory management 153
memory map 288
memory page 153
memory reservation 34
memory, logical 153 288
memory, physical 153 288

Index

memory, virtual 153 288 289
menu button 162
menu 172173
metric 186
mode variables 283
mode, screen 283
module 119 123
module death 126
module error 123
module finalisation 126
module format 124
module header 124
module help string 132
module initialisation 125
module start-up 125
module title string 132
module workspace 123
module, printer buffer 141
module, relocatable 119
module, shell 152 157
mouse 161 282
mouse button 170
MouseV 259
multi-tasking 153 164
multiple register instruction 31
multiplication 27 28
multiply 27 28

N flag 22
Negative flag 22
NFS ~
NOT 26
null reason code 167
null : 69
number, SWI 41
numbering, error 44

315

Archimedes Operating System

offset assembly 35 36
options, boot 86
options, copy 78
options, Font painting 189
OR 26
OS co-ordinate 190 191
OSRDCH 239
OSWORD &00 240 241
OS_Args 107
OS_BGet 105
OS_BinaryToDecimal 274
OS_BPut 107
OS_Byte &02 239
OS_Byte &03 245
OS_Byte &OS 247
OS_Byte &81 240
OS_Byte &C7 248
OS_Byte SWis 242
OS CallAfter 278
OS=CallAVector 260
OS_CallEvery 278
OS_ChangeEnvironment151152
OS_CheckModeValid 281
OS_Claim 260
OS_CLI 4761
OS_CLI commands 50
OS_Convert SWis 275
OS_EvaluateExpression 53 273
OS_Exit 151
OS File 93
OS=Find 100
OS_FSControl 109
OS_GBPB 102
OS_GenerateError 45
OS_GenerateEvent 267
OS_GetEnv 150
OS_GSinit 271
OS_GSRead 271
OS_GSTrans 62 134 272
OS_Heap 154
OS_Module 122 138 151 154
OS_Mouse 282
OS_PrettyPrint 250 251
OS_ReadC 239
OS_ReadEscapeState 45
OS_ReadLine 241
OS_ReadModeV 283
OS_ReadMonotonicTime279

316

OS_ReadPalette 285
OS_ReadPoint 286
OS_ReadUnsigned 273
OS_ReadVarVal 61
OS_Release 260
OS_RemoveCursors 282
OS_RemoveTickerEvent 279
OS_RestoreCursors 282
OS_ServiceCall 126
OS_SetVarVal 62
OS_SWINumberFromString 42 276
OS_SWINumberToString 42 276
OS_ ValidateAddress 156
OS_ WriteC 248
OS_Writel 249
OS_ WriteO 250
OS_ WriteS 249
output stream 245
output, character 244
Overflow flag 22 43
overflow flag 124

page, memory 153
palette 285 291
parent directory 68
pathname 68
PC 20
physical memory 153 288
Physical Work Area 162
pitch 202
pixel 186 286
pointing 161
point 186
polling 166
polling loop 166
position independence 37
position, display 60
position, stereo 292
post-indexing 30
pre-fetch abort 255
pre-indexing 30
previously selected directory 68
printer buffer module 141
printer stream 246
printer: 69
PRM 14
program counter 20
program disc 302
Programmers Reference Manual 14

PSD
PSR
punctuation
PWA
R14
R15
RAM filing system
rawkbd:
rawvdu:
Read CV
ReadLineV
reason code
reason code, null
reason-code
redirection, file
redraw, window
register list
register, load
register, shadow
register, store
release heap
relocatable module
relocatable module area
RemV
reservation, memory
return
return from branch
RISC
RMA
ROM
root
RS423 stream
rub-out box
Run$Path
Run$Type
sample rate
screen mode
screen save
screen, display
scroll bar
scroll offset
search path
select button
selection
service call
service routine
shadow register
shell module

68
20
67
162163165
2025
20
66
69
69
258
259
127167
167
164
48
167
31
29
263
29
155
119
119
259
34
26
26
15
119
156
67
246
190
73
71
208
283
94
286
162
165
72
161
161
126
263
263
152 157

shifting 24
shuffle icon 162
sideways ROM 119
simple input/ output 238
Smalltalk 161
software compatability 156
software guidelines 156
software interrupt 32 255
software vector 258
sound frequency 292
Sound SWis 207
Sound Channels 196
Sound Default 201
SoundDMA 195196
SoundScheduler 197
Sound_AttachNamedVoice 215
Sound_Attach Voice 216
Sound_ Configure 207
Sound_ Control 218
Sound_ControlPacked 218
Sound_ Enable 210
Sound_InstallVoice 215
Sound_LogScale 217
Sound Pitch 217
Sound=QBeat 223
Sound_Qinit 221
Sound_QSchedule 221
Sound_QTempo 223
Sound_ReadControlBlock 219
Sound_RemoveVoice 215
Sound_SoundLog 217
Sound_Speaker 210
Sound_Stereo 212
Sound_ Tuning 217
Sound_ Volume 216
Sound_WriteControlBlock 219
split bar 271
spool file 247
spool stream 247
stack, ascending 32
stack, descending 32
stack, empty 32
stack, full 32
start-up, module 125
status byte, keyboard 242
stereo position 292
store register 29
stream, input 238

Index

317

Archimedes Operating System

stream, output 245
stream, printer 246
stream, RS423 246
stream, spool 247
stream, VDU 246
stretch icon 162
string conversion 271
string decoding 271
string, in-line 249
string, indirect 250
sub-directory 67
sub-menu 173 174
subtract 26
supervisor mode 17 22 32
supremacy 292
SVCB 226
SWI 3241
SWI chunk 42
SWI chunk base number 136
SWI decoding code 137
SWI decoding table 137
SWI error 43
SWI handling code offset 136
SWI number 41
SWI translation 137
SWis, conversion 271
SWis, OS_Byte 242
SWis, OS_Convert 275
SWis, Sound 207
SWis, VDU 281
SWis, WIMP 175
Sys$ 57
Sys$DateFormat 60

temporary application 151
test 27
text justification 189
tick mark 173
TickerV 259
time limit 240
timer 278 293
title bar 162 165
title string, module 132
toggle icon 162
top-down, application 151
translation, memory address 290
translation, SWI 137
tree, directory 116

318

TWIN 149152
two-pass assembly 36

UKPLOTV 259
UKSWIV 259
UKVDU23V 259
unknown instruction 255
unknown PLOT vector 259
unknown SWI vector 259
unknown VDU23 vector 259
up 68
UpCallV 259
update 232
user interface 161
user mode 17 22
USR ~

V flag 22 43 124
validation, address 156
variables, mode 283
VDU extension vector 259
VDU stream 246
VDU SWis 281
vdu: 69
VDU 186
VDUX 1~
VDU XV 259
vector 255 263
vector, hardware 255
vector, intercepting 259
vector, software 258
vector, unknown PLOT 259
vector, unknown SWI 259
vector, unknown VDU23 259
vector, VDU extension 259
vertical bar 271
vertical sync event 268
VIDC 18 287 291
virtual memory 153 288 289
voice generator code 232
voice generators 195
voice generator 226

WIMP
WIMP SWis
Wimp_CloseDown
Wimp_CloseWindow
Wimp_CreateMenu
Wimp_DeleteWindow
Wimp_GetRectangle

161
175
172
169
172173
172
168

Wimp_Initialise 164
Wimp_OpenWindow 166169
Wimp_Poll 166172
Wimp_RedrawWindow 167168
Wimp_UpdateWindow 168
window co-ordinate 163
window control block 164 165
Window Manager 161163175
window 161
window redraw 167
Wipc$0ptions 92
WordV 258
workspace, application 152 153
workspace, module 123
write-back 30
WriteCV 258
writing, application 149

Xbit 4244

Zflag 22
Zero flag 22
\ 67
A 67
(48
I 48 271
} 48

67

Index

319

Archimedes Operating System

Notes

320

